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Preface

This document offers a large overview of the eight months’ schedule of Seminario Dottorato
2014/15. Our “Seminario Dottorato” (Graduate Seminar) is a double-aimed activity. At
one hand, the speakers (usually Ph.D. students or post-docs, but sometimes also senior
researchers) are invited to think how to communicate their researches to a public of math-
ematically well-educated but not specialist people, by preserving both understandability
and the flavour of a research report. At the same time, people in the audience enjoy a
rare opportunity to get an accessible but also precise idea of what’s going on in some
mathematical research area that they might not know very well.
Let us take this opportunity to warmly thank the speakers once again, in particular for
their nice agreement to write down these notes to leave a concrete footstep of their par-
ticipation. We are also grateful to the collegues who helped us, through their advices and
suggestions, in building an interesting and culturally complete program.

Padova, July 2nd, 2015

Corrado Marastoni, Tiziano Vargiolu
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Abstracts (from Seminario Dottorato’s web page)

Wednesday 5 November 2014

The stochastic mesh method to price swing contracts

Matteo BASEI (Padova, Dip. Mat.)

This talk is based on the results achieved during a six-month internship in the Risk Department

of a leading energy company. Our goal is twofold: on the one hand we give a brief survey on

the problem of pricing swing contracts by the stochastic mesh method, on the other hand we

describe our experience in the use of advanced mathematics in a private company. Firstly, we

consider the case of American options and study the original formulation of the stochastic mesh

method, introduced by Broadie and Glasserman in 1997. Secondly, we try to improve the method

by optimally calibrating the parameters, by a literature review and by the use of variance reduction

techniques. Finally, we use the revised method to price swing options in energy markets.

Wednesday 19 November 2014

Singular perturbations of stochastic control problems with unbounded fast variables

Joao MEIRELES (Padova, Dip. Mat.)

In this talk, we first give a short introduction to singular perturbations problems and to the

Hamilton-Jacobi approach to the singular limit ε → 0. And we will end by considering a specific

singular perturbation problem of a class of optimal stochastic control problems with unbounded

fast variables and discussing some recents results.

Wednesday 26 November 2014

An introduction to density estimates for diffusions

Paolo PIGATO (Padova, Dip. Mat.)

We recall some notions in Malliavin calculus and some general criteria for the absolute continuity

and regularity of the density of a diffusion. We present some estimates for degenerate diffu-

sions under a weak Hormander condition, obtained by starting from the Malliavin and Thalmaier

representation formula for the density. As an example, we focus in particular on the stochastic

differential equation used to price Asian Options.
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Wednesday 17 December 2014

A gentle introduction to semistable degeneration of K3 surfaces

Genaro HERNANDEZ MADA (Padova, Dip. Mat.)

In this talk we give the elements to understand the definition and two results about semistable

degenerations of K3 surfaces over the complex numbers. The first result is a description of the

special fiber and the second one is a classification of it in terms of monodromy. If time allows, we

shall also introduce the p-adic analogue of these results.

Wednesday 28 January 2015

Shape sensitivity analysis for vibrating plate models

Davide BUOSO (Padova, Dip. Mat.)

In this talk, we consider two different models for the vibration of a clamped plate: the Kirchhoff-

Love model, which leads to the well known biharmonc operator, and the Reissner-Mindlin model,

which instead gives a system of differential equations. We point out similarities and differences,

showing the connections between these two problems. Then we show some results concerning

the stability of the spectrum with respect to domain perturbations. After recalling the known

results in shape optimization for the biharmomic operator, we state some analyticity results for

the dependence of the eigenvalues upon domain perturbations and Hadamard-type formulas for

shape derivatives. Using these formulas, we prove that balls are critical domains for the symmetric

functions of the eigenvalues under volume constraint.

Wednesday 11 February 2015

Metastability of the Ising model on random graphs at zero temperature

Sander DOMMERS (Bologna, Dip. Mat.)

In this talk I will introduce a random graph model known as the configuration model. After this,

I will discuss the Ising model, which is a model from statistical physics where a spin is assigned to

each vertex in a graph and these spins tend to align, i.e., take the same value as their neighbors. It

is especially interesting to study the Ising model on random graphs. I will discuss some properties

of this model. In particular, I will talk about the dynamics and metastability in this model when

the interaction strength goes to infinity. This corresponds to the zero temperature limit in physical

terms.
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Wednesday 25 February 2015

Automorphism-invariant modules

Khanh Tung NGUYEN (Padova, Dip. Mat.)

In this talk, after recalling some basic concepts, we mention the class of injective modules, the class

of quasi-injective modules and their generalization, the class of automorphism-invariant modules.

Next, we give some results related to the endomorphism rings of automophism-invariant modules

and their injective envelopes. Finally, we show a connection between automorphism-invariant

modules and bolean rings.

Wednesday 18 March 2015

Introduction to kernel-based methods

Gabriele SANTIN (Padova, Dip. Mat.)

In this talk we give an introduction to kernel-based methods and to their application in different

fields of applied mathematics. We consider some examples that motivate the use of kernel-based

techniques. Each example can be included in the same framework, but allows to show and discuss

different features that arise naturally in the particular application. The examples deal with mul-

tivariate scattered data approximation, optimal recovery in Hilbert spaces, numerical solution of

PDE, machine learning, and statistics. After building up the fundamental tools of kernel-based

methods, we will introduce the problem of the determination of optimal subspaces for kernel-

based multivariate approximation. We will give some insight into the problem and discuss possible

applications.

Wednesday 1 April 2015

Zooming into p-adic curves

Velibor BOJKOVIC (Padova, Dip. Mat.)

The goal of the seminar is to introduce the audience to the basic notions of Berkovich geometry

through a toy example of a p-adic projective curve. After recalling the basic properties of a p-adic

field, we motivate Vladimir Berkovich’s approach to studying geometry over such fields and go into

describing the structure of compact p-adic curves.
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Wednesday 15 April 2015

Sobolev spaces, differential operators and multipliers

Aigul MYRZAGALIYEVA (Padova, Dip. Mat. and Eurasian National Univ. Astana)

In this talk, after recalling some basic notions of Sobolev spaces we give some examples, then we

introduce differential operators and multipliers in pair of Sobolev spaces. We give the statement

and motivation of the problem. Morever, we also present some open problems.

Wednesday 29 April 2015

Preferences in AI

Cristina CORNELIO (Padova, Dip. Mat.)

Artificial Intelligence (AI) is a field that has a long history but still constantly and actively grow-

ing and changing. The applications of AI are several, for example web search, speech recognition,

face recognition, machine translation, autonomous driving, automatic scheduling etc. These are

all complex real-world problems, and the goal of artificial intelligence (AI) is to tackle these with

rigorous mathematical tools: machine learning, search, game playing, Markov decision processes,

constraint satisfaction, graphical models, and logic. Recently, a new concept became very im-

portant in AI: the use of preferences. Let’s think about social networks, online shops, systems

that suggest music or films. In this talk it is presented an overview on the main applications of

preferences in AI, like recommender systems, multi-agent decision making, computational social

choice, stable marriage problems, uncertainty in preferences and qualitative preferences.

Wednesday 6 May 2015

Variational methods in nonlinear elasticity: an introduction

Alice FIASCHI (Padova, Dip. Mat.)

After a brief introduction of the variational formulation for the standard model in nonlinear elas-

ticity, we will consider the problem of finding the “right” space to describe the equilibrium configu-

rations of an elastic body, from the point of view of the Calculus of Variations. In this framework,

I will introduce the space of Young measures as a suitable space to describe materials exhibiting

microstructures.
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Wednesday 27 May 2015

Controllability and the numerical approximation of the minimum time function

Thien Thuy LE THI (Padova, Dip. Mat.)

In optimal control theory, minimum time problems are of interest since they appear in many

applications such as robotics, automotive, car industry, etc.. The scope of this talk is to give a brief

introduction of these problems. Controllability conditions under various settings are considered.

Such conditions play a vital role in studying the regularity of the minimum time function T (x).

Moreover, we will also introduce the HJB equation associated with a minimum time problem and

approaches to computing T (x) approximately.

Wednesday 10 June 2015

An introduction to derived categories

Francesco MATTIELLO (Padova, Dip. Mat.)

Derived categories were introduced in the sixties by Grothendieck and Verdier and have proved to

be of fundamental importance in Mathematics. Starting with a short review of the basic language

of category theory, we will first introduce the notion of abelian category with the help of several

examples. Then we will spend some time giving a thorough motivation for the construction of the

derived category of an abelian category. Finally, we will look at a way to break a derived category

into two pieces that permit (among other things) to recover the original abelian category.

Wednesday 24 June 2015

Why should people in approximation theory care about (pluri-)potential theory?

Federico PIAZZON (Padova, Dip. Mat.)

We give an introductory summary of results in (pluri-)potential theory that naturally come into

play when considering classical approximation theory issues both in one and (very concisely) in sev-

eral complex variables. We focus on Fekete points and the asymptotic of orthonormal polynomials

for certain L2 counterpart of Fekete measures. No specific knowledge on the topic is assumed.
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The stochastic mesh method to price

American options and swing contracts

Matteo Basei (∗)

Abstract. This talk is based on the results achieved during a six-month internship in the Risk
Department of a leading energy company. Our goal is twofold: on the one hand we give a brief
survey on the problem of pricing swing contracts by the stochastic mesh method, on the other
hand we describe our experience in the use of advanced mathematics in a private company.
Firstly, we consider the case of American options and study the original formulation of the stochas-
tic mesh method, introduced by Broadie and Glasserman in 1997. Secondly, we try to improve the
method by optimally calibrating the parameters, by a literature review and by the use of variance
reduction techniques. Finally, we outline how to use the method to price swing options in energy
markets.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2. Pricing American options by the stochastic mesh method . . . . . . . . . . . . . . . . . . . . . 10
3. Improving the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Pricing swing options by the stochastic mesh method . . . . . . . . . . . . . . . . . . . . . . . . . 15

1 Introduction

We here give the definitions of European and American options and outline some features
of energy markets.

European and American options. The following definitions are fundamental in
mathematical finance.

- A European option is a contract giving the holder the right (not the obligation!) to
buy or sell an underlying asset at a prespecified price and on a prespecified date.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on November 5th, 2014.
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Example. We have the right to buy one UniPd stock at 10e on 10th November. On
that date, we check the price of one UniPd stock; if the price is less than 10e, we
do not exercise the option, if the price is greater than 10e (say 15e), we do exercise
the option (the gain being 15-10=5e).

- An American option is similar to a European option, but here the holder can choose,
among a set of prespecified dates, when to exercise the right.

Example. We have the right to buy one UniPd stock at 10e on 10th, 11th, 12th or
13th November. On those dates, we check the price and decide if exercising or not.
The problem of which date to choose is not easy at all and will be sketched below.

Given a function h : R×Rd → R and an option (either European or American), we say that
the option has payoff h if h(t, x) is what the owner would gain when exercising the option
at time t and underlying price St = x. In the previous examples, h(t, x) = (x−10)+, since
we exercise if and only if x ≥ 10 and, in that case, what we gain is x− 10.

A fundamental problem is how to compute the fair price of a European or American
option with payoff h, where, without entering in technicalities, by fair price we mean that
neither the buyer nor the seller can make sure profits. It can be proved that such a price
is

- Q = E[h(T, ST )] for European options, where T is the maturity;

- Q = supτ E[h(τ, Sτ )] for American options, where the τ ’s are stopping times taking
value in the set of the possible exercise dates.

For the European price, closed formulas sometimes exist; otherwise, fast numerical schemes
can be applied. On the contrary, the computation of the American price is a complicated
problem, and several methods have been proposed. We here focus on the stochastic mesh
method, introduced by Broadie and Glasserman in [2].

Finally, we remark that much more complicated options are present in the market:
multiple exercise, constraints, and so on. This is the case, for example, of swing options.

Swing contracts. The price of energy is subject to remarkable fluctuations, mainly
because the markets are influenced by many elements (peaks in consumes, breakdowns in
power plants, etc.) and because energy storage is either costly or almost impossible. To
hedge against the risk of sudden price rises, several options are traded in the market. In
particular, swing contracts give the holder the right to buy energy at an agreed (floating)
price, but with some local and global constraints: on the one hand the withdrawal intensity
is bounded, on the other hand some final conditions must be satisfied (e.g. lower and upper
bounds on the totally bought quantity).

The problem of pricing swing options has been a challenging research subject in the
last few years. The difficulties are both theoretical (we deal with a constrained stochastic
control problem) and numerical (we usually have dozens of underlyings, so that there is
the need of designing algorithms which are efficient even with high-dimensional problems).

Basically, most of the methods proposed in the literature consist in a suitable adapta-
tion of some existing techniques originally meant to price American options. In our case,
we will adapt the stochastic mesh method.

Università di Padova – Dipartimento di Matematica 9
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Contents. We here mainly focus on the basic theory of the stochastic mesh method.
However, we will sketch some research areas related to this subject. In Section 1 we
describe the original formulation of the stochastic mesh procedure; in Section 2 we try to
improve the method by optimally calibrating the parameters, by considering some changes
in the algorithm and by implementing importance sampling techniques; in Section 3 we
outline the problem of pricing swing contracts by the stochastic mesh method.

2 Pricing American options by the stochastic mesh method

We first give a precise formulation of the problem of pricing American options, sketched
in the Introduction; then, we describe the pricing procedure proposed by Broadie and
Glasserman.

Formulation of the problem. We consider a time interval [ti, tf ] and a filtered
probability space, where a d-dimensional Markov process S = {St}t∈[ti,tf ] ∈ Rd is defined.
We assume the initial state of the process to be deterministic and fixed: Sti = S0, for a
given S0 ∈ Rd. Let h be a function from [ti, tf ] × Rd to R representing the payoff, which
means that h(t, x) is what the holder gains if he exercises the option at time t ∈ [ti, tf ] and
with St = x. Let r ≥ 0 be the riskless interest rate, here assumed constant. It is known
that the price at time t ∈ [ti, tf ] and state x ∈ Rd of the American option with payoff h
and underlying S is

(2.1) Q(t, x) = sup
τ∈T t,tf

E[e−r(τ−t)h(τ, Sτ )|St = x],

where T a,b is the set of the [a, b]-valued stopping times. In particular, the initial price of
the option is

(2.2) Q(ti, S0) = sup
τ∈T ti,tf

E[e−r(τ−t
i)h(τ, Sτ )].

Instead of a continuous time interval [ti, tf ], a discrete time grid

ti = t0 < t1 < · · · < tT−1 < tT = tf

is usually considered, both for contractual issues and for numerical needs. In this case,
the initial price of the option is

(2.3) Q(t0, S0) = sup
τ∈T 0,T

E[e−r(τ−t0)h(τ, Sτ )].

where T 0,T is the set of the {t0, . . . , tT }-valued stopping times. It can be proved that,
as T → +∞, the value in (2.3) converges to the value in (2.2). We remark that, even
if we now consider a discrete set of exercise dates, the underlying is a continuous time
process. Finally, we will still use the name American option to designate problems as in
(2.3), although the name Bermudan option is sometimes used in such a framework.

Università di Padova – Dipartimento di Matematica 10
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It is well known that problem (2.3) admits the following dynamic programming repre-
sentation:

Q(tT , x) = h(tT , x),(2.4)

Q(ti, x) = max{h(ti, x), e−r(ti+1−ti)E[Q(ti+1, Sti+1)|Sti = x]},(2.5)

for x ∈ Rd and i ∈ {0, . . . , T − 1}. The discounted conditional expectation in (2.5),
called the continuation value, has the following meaning: it is the discounted price of the
option at time ti+1 if it is not exercised at time ti. In other words, equation (2.5) is the
mathematical formulation of the obvious principle that an American option should be
exercised when the payoff is greater than the value one expects to gain if he decides not
to exercise immediately.

As a consequence, we also have a formula for the optimal stopping time:

(2.6) τopt = min{i ∈ {0, . . . , T} : h(ti, Sti) ≥ Q(ti+1, Sti+1)},

so that

(2.7) Q(t0, S0) = E[e−r(τ
opt−t0)h(τopt, Sτopt)].

At this level, formulas (2.6) and (2.7) are not useful from a practical point of view, since
they require the knowledge of the price, which is exactly our aim.

To be consistent with [2], from now on we will write, with a small abuse of notation,

Q(i, x) = Q(ti, x), h(i, x) = h(ti, x).

Thus, the price function Q and the payoff h will take value in {0, . . . , T} × Rd, whereas
the stopping times will be {0, . . . , T}-valued.

Unless the European case, even under simple assumptions (such as the Black-Scholes
model) there are no closed formulas for the price of an American option and the problem
of approximating (2.3) has been a challenging research topic in the last years. Providing
a detailed list of the main methods would be beyond the scope of this notes: we refer the
interested reader to the comprehensive book by Glasserman [4] and to the papers [3], [5].

Our aim is to study a particular method: the stochastic mesh (SM from now on)
method, introduced by Broadie and Glasserman in [2]. Basically, the authors consider
the dynamic programming formulation of the pricing problem and, as a core part of
the method, approximate the conditional expectations by weighted sums depending on
the density of the underlying. In so doing, they get a high-biased estimator (the mesh
estimator), which is combined to a low-biased estimator (the path estimator) to produce
a confidence interval. We now describe in detail this procedure.

First step: the mesh estimator. To simplify the notations, we henceforth assume
r = 0. We first recall the dynamic programming formulation (2.4)-(2.5) of the pricing
problem for an American option:

Q(T, x) = h(T, x),(2.8)

Q(t, x) = max{h(t, x),E[Q(t+ 1, St+1)|St = x]},(2.9)

Università di Padova – Dipartimento di Matematica 11



Seminario Dottorato 2014/15

where (T, x) ∈ {T}×Rd and (t, x) ∈ {(0, S0)}∪{1, . . . , T −1}×Rd. Recall that we assume
S to be a continuous-time Markov process with deterministic initial value S0 ∈ Rd.

Let b ∈ N. The cornerstone of the SM approach is to consider the following net:

we simulate b paths of the underlying

and we forget the trajectory each point comes from.

In this way, we get a mesh (the stochastic mesh naming the method) made up of one de-
terministic point X0(1) = S0 at time t = 0 and of b stochastic i.i.d. points Xt(1), . . . , Xt(b)
at time t ∈ {1, . . . , T}. Notice that, by construction, the density of each point at time
t+ 1, conditioned to the values of the point(s) at time t, is g(1, ·) = f(0, S0, ·) in the case
t = 0 and g(t + 1, ·) = 1

b

∑b
k=1 f (t,Xt(k), ·) in the case t > 1, where the function f is

defined by
f(t, x, ·) = Density(St+1|St = x),

for each t ∈ {1, . . . , T} and x ∈ Rd (for simplicity’s sake, we omit to remark the condi-
tioning values in the notations).

We link each point at time t to all the points at time t + 1 and we tag the arcs with
the following weights: w (0, X0(1), X1(j)) = 1, with j ∈ {1, . . . , b}, and

w (t,Xt(i), Xt+1(j)) =
f (t,Xt(i), Xt+1(j))

1
b

∑b
k=1 f (t,Xt(k), Xt+1(j))

,

with t ∈ {1, . . . , T} and i, j ∈ {1, . . . , b}. We then approximate the continuation value by

E[Q(t+ 1, St+1)|St = x] ≈ 1

b

b∑
j=1

Q(t+ 1, Xt+1(j))w(t, x,Xt+1(j));

this leads to estimate the option price Q(0, S0) by Q̂(0, S0), where the function Q̂ is
recursively defined by

Q̂(T,XT (i)) = h(T,XT (i)),

Q̂
(
t,Xt(i)

)
= max

h(t,Xt(i)),
1

b

b∑
j=1

Q̂
(
t+ 1, Xt+1(j)

)
w
(
t,Xt(i), Xt+1(j)

) ,

with t ∈ {T − 1, . . . , 0} and i ∈ {1, . . . , b} (but if t = 0, then i = 1). We call Q̂(0, S0) the
mesh estimator of the price. We remark that Q̂(0, S0) depends on b, even if, for the sake
of simplicity, such dependence is not explicit in the notation we use. It can be proved that
the mesh estimator is high-biased and convergent to the real price:

Proposition 2.1 Under technical assumptions:

- the mesh estimator is high-biased, i.e. E[Q̂(0, S0)] ≥ Q(0, S0);

- for a suitable p > 1, the mesh estimator converges in Lp to the true price, i.e. ‖Q̂(0, S0)−
Q(0, S0)‖p → 0 as b→∞.

Università di Padova – Dipartimento di Matematica 12
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Since our goal is to provide a brief summary over the SM method, we do not report
here all the assumptions and proofs (which are mainly based on induction): we refer the
reader to [2].

For future use, we are interested in estimating the price function Q in points outside
the mesh. The same idea as above leads to

Q̂(T, x) = h(T, x),

Q̂(t, x) = max

h(t, x),
1

b

b∑
j=1

Q̂
(
t+ 1, Xt+1(j)

)
w
(
t, x,Xt+1(j)

) ,

where (T, x) ∈ {T} × Rn and (t, x) ∈ {(0, S0)} ∪ {1, . . . , T − 1} × Rn. Notice that the
recursion involves all the mesh points from time t + 1 on. The weights are defined by
w (0, S0, X1(j)) = 1, with j ∈ {1, . . . , b}, and

w (t, x,Xt+1(j)) =
f (t, x,Xt+1(j))

1
b

∑b
k=1 f (t,Xt(k), Xt+1(j))

,

with t ∈ {1, . . . , T} and j ∈ {1, . . . , b}. A result similar to Proposition 2.1 holds.

Second step: the path estimator. Since the mesh estimator Q̂(0, S0) is high-
biased, we cannot provide a confidence interval. The idea of Broadie and Glasserman is to
look for a low-biased estimator (which is quite easy when a price approximation is already
available) and to combine the two estimates.

Recall the characterization provided in (2.3):

Q(0, S0) = sup
τ

E[h(τ, Sτ )].

Thus, we get low-biased estimators by simply considering q̂(0, S0) = h(τ̂ , Sτ̂ ), for any
stopping time τ̂ . How to choose τ̂ so as to assure convergence as b→∞? Recall that the
optimal exercise strategy of an American option is

τopt = min{t ∈ {0, . . . , T} : h(t, St) ≥ Q(t, St)}.

Of course, we do not know Q: however, we know a convergent estimator of such a function.
So, we consider the estimator

q̂(0, S0) = h(τ̂ , Sτ̂ ),

where the stopping time τ̂ is defined by

τ̂ = min{t ∈ {0, . . . , T} : h(t, St) ≥ Q̂(t, St)},

Q̂ being the approximating function previously defined. In order to have better estimates,
we “fix” Q̂ and combine the results of several path estimates: more in detail, we consider
the average of the results from np ∈ N path estimates with respect to the same stochastic
mesh (and then the same estimator Q̂). The authors suggest to choose np = 10b; we are
going to discuss this choice in the next section.

Università di Padova – Dipartimento di Matematica 13
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To sum up, we consider the estimator q̂(0, S0), called the path estimator of the real
price, defined by

q̂(0, S0) =
1

np

np∑
i=1

h(τ̂ (i), S
(i)

τ̂ (i)
),

where the stopping times τ̂ (i) are defined by

τ̂ (i) = min{t ∈ {0, . . . , T} : h(t, S
(i)
t ) ≥ Q̂(t, S

(i)
t )},

the stochastic mesh (and then the estimator Q̂) is the same in the np simulations and
S(i) (i = 1, . . . , np) are independent sample paths of the underlying. Notice that this is
not a recursive definition. The properties of the path estimator (which depends on b as
well, even if not explicitly remarked by the notation we use) are summarized in the next
proposition.

Proposition 2.2 Under technical assumptions,

- the path estimator is low-biased, i.e. E[q̂(0, S0)] ≤ Q(0, S0);

- the path estimator is asymptotically unbiased , i.e. E[q̂(0, S0)]→ Q(0, S0) as b→∞.

Third step: the confidence interval. Since we have both a low-biased and a
high-biased estimator, we can combine them to get a confidence interval.

First, we consider N ∈ N estimates Q̂(i)(0, S0) of the mesh estimator (i = 1, . . . , N),
and average them to obtain

Q̄(N) =
1

N

N∑
i=1

Q̂(i)(0, S0).

Then, we consider N estimates q̂(i)(0, S0) of the path estimator (i = 1, . . . , N), and average
them to obtain

q̄(N) =
1

N

N∑
i=1

q̂(i)(0, S0).

By jointly considering the averaged estimates, we have the following confidence interval[
q̄(N)− zα/2

std(q̂)√
N

, Q̄(N) + zα/2
std(Q̂)√

N

]
,

where zα/2 is the 1−α/2 quantile of the standard normal distribution and std(q̂), std(Q̂)

are the sample standard deviations of {q̂(i)(0, S0)}i, {Q̂(i)(0, S0)}i.
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3 Improving the method

In the previous section, we outlined the original stochastic mesh method, as detailed in [2].
When testing this algorithm, it turns out to be quite slow and biased. As a consequence,
we have tried to improve the performances of the method, in several ways. We here sketch
some of the results.

First idea: parameter calibration. We had the idea that the values of the param-
eters proposed by Broadie and Glasserman are not the optimal ones. As a first attempt to
improve the performance of the SM method, we then considered the problem of optimally
calibrating the parameters of the method. Remarkable results can be achieved.

Second idea: literature review. We wondered if some changes can be made at a
deeper level, and if the idea in [2] can be enhanced by improving the algorithm. Hence,
we have looked in the literature for papers about the SM method.

Some papers drew our attention and we tested the enhancements therein proposed. We
do not report the results here; however, we have not noticed any remarkable improvement,
so that the original algorithm still remains the best one, in our opinion.

Third idea: variance reduction. Another way to improve the performance of the
SM method is to use some variance reduction techniques. In their paper, Broadie and
Glasserman focus on control variates; the results are remarkable, and other methods can
be tested.

4 Pricing swing options by the stochastic mesh method

In this section we consider the problem of pricing swing contracts by (an adapted for-
mulation of) the stochastic mesh method. We consider swings written on gas, but the
framework can be, of course, adapted to other commodities.

Swing contracts: formal definition. Let us consider a finite set of dates t0 <
t1 < · · · < tT . As usual, in order to simplify the notations, we will denote them just by
the index. We assume the price of the gas to be a continuous-time Markov process P ;
moreover, let r be the risk-free interest rate.

In every date t ∈ {0, . . . , T}, the holder of the option has the right to buy gas at
strike price Kt, instead of the market price Pt. Usually Kt consists in a weighted average,
computed with respect to a basket of indexes (e.g. the prices of oil and gas in the preceding
six months). Some conditions must be satisfied. First of all, the quantity of gas the owner
buys at time t, denoted by ut, must lie in a prespecified interval [umin

t , umax
t ]. Moreover,

some global constraints are present: the most common one consists in setting a lower
and an upper bound on the total bought quantity

∑T
s=0 us, but other conditions can

hold too (for example, constraints on the gas bought in every month, and so on). These
constraints can be strict or not; in the latter case a penalty must be paid for every
unattained condition.
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Notice that the owner’s exercise strategy is here modeled by a process u = {ut}t∈{0,...,T}.
For every t, let Zt =

(∑
s∈{0,...,t}∩T1 us, . . . ,

∑
s∈{0,...,t}∩Tn us

)
∈ Rn be a vector collecting

the energy globally bought, up to time t, with respect to some sub-periods T1, . . . , Tn ⊆
{0, . . . , T}, as set in the constraints present in the contract. For example, if the owner
is asked to fulfill a condition on the whole period (say, one year) and on every semester
(hence, two more constraints), Zt will store the quantity which has been bought until time
t in the first semester, in the second semester, in the whole period. We denote by A(t, p, z)
the set of processes {ut, . . . , uT } satisfying all the constraints (local and global) of the prob-
lem, under the conditions Pt = p Zt = z. Finally, we denote by ξ the penalty function:
ξ(t, p, z) denotes the penalty that the owner must pay at time t and state Pt = p, Zt = z
because of possible unreached conditions. We can now write the pricing problem. At every
time t, the owner’s gain or loss is (Pt −Kt)ut, so that the global expected earning with
strategy u is

E

[
T∑
t=0

e−rt[(Pt −Kt)ut − ξ(t, Pt, Zt)]

]
.

As well known, the price is the supremum of the expected gain with respect to the set of
admissible strategies, i.e.

Q = sup
u∈A(0,P0,Z0)

E

[
T∑
t=0

e−rt[(Pt −Kt)ut − ξ(t, Pt, Zt)]

]
.

Swing contracts: pricing. The stochastic mesh method can be used here, since the
price formula can be rewritten by the dynamic programming principle. For example, let
r = 0 and consider a swing with constant local constraint ut ∈ [umin, umax], one global
constraint over the whole period, ZT =

∑T
s=0 us ∈ [Umin, Umax], no penalties. Then, we

have

Q(T, p, z) = (−∞)1R\[Qmin,Qmax](z),

Q(t, p, z) = max
u∈U(t,z)

{
(p−Kt)u+ E

[
Q(t+ 1, Pt+1, z + u)

∣∣Pt = p
]}
,

U(t, z) =
{
u ∈ [umin, umax] : z+u ∈ [(Umin−(T+1−t)umax)+, (Umax−(T+1−t)umin)+]

}
.

We refer the interested reader to [1] for details.
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Singular perturbations of stochastic control

problems with unbounded fast variables

João Meireles (∗)

Abstract. In this talk, we first give a short introduction to singular perturbations problems and
to the Hamilton-Jacobi approach to the singular limit ε → 0. Then, we consider a specific singu-
lar perturbation problem of a class of optimal stochastic control problems with unbounded and
controlled fast variables and we discuss (briefly) how to solve it.

1 Statement of the problem

In a classic singular perturbed system (SPS) the state variables evolve along two different
time scales: a positive parameter ε appears in front of one of the time derivatives affecting
its velocity - the equation of the fast variables. Our problem is to describe and understand
the asymptotic behaviour of a (SPS) as the parameter ε vanishes.

A simple model is

(Sε)

{
ẋ(t) = f(x(t), y(t), a(t)), x(0) = x
εẏ(t) = g(x(t), y(t), a(t)), y(0) = y

where

• x ∈ Rn and y belongs to Tm ' Rm/Zm (the flat torus);

• the functions a(·) are controls and they are measurable functions from [0,∞) to a
compact metric space A (and we will denote by A the set of all these functions);

• f and g are continuous functions in all their variables and Lipchitz-continuous in
(x, y) uniformly with respect to the control a.

(Sε) is a good example of a singular perturbed control system. As mentioned before, the
role of ε is obvious: it splits the state variables in two groups, one, a group of n slow

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
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Università di Padova – Dipartimento di Matematica 18



Seminario Dottorato 2014/15

variables evolving in a macroscopic time scale, and, another, a group of m fast variables
evolving along a microscopic time scale. This is the reason why the study of multiscale
problems is an important issue in many applications of engineering, chemistry and physics.
Many phenomena can be modelled by a (SPS).

Here we are interested in characterising and analysing the asymptotic behaviour of (Sε) as
ε → 0 (if this makes sense). It is expected that passing to the limit as ε → 0+ in the the
initial problem amounts to reducing the dimension of the state space and that the limit
dynamics (S̄) (if it exists) involves only the slow variables.

2 Some approaches to singular perturbations problems

There are some approaches to address our problem. Here we present the most relevant
ones:

• (The Levinson-Tikhonov method) This approach consists in considering, as the nat-
ural candidate for the limit, the system obtained by setting ε = 0 in (Sε). The result
is an ordinary differential equation combined with an algebraic equation. This ap-
proach gives the appropriate solution when the stationary points of the fast dynamics
are attractive, a condition that may fail to be satisfied.

• (Limit of occupational measures) Other averaging approaches have been proposed
by Artstein in the context of invariant measure theory (see [5]), and by Gaitsgory
and Leizarowitz, using limit occupational measures (see [11]).

• A PDE method based in the theory of viscosity solutions and of the homogenisation
of fully nonlinear PDEs was developed by Alvarez and Bardi in [1,2,3], also [4] for
problems with an arbitrary number of scales. This the approach that we will consider
in this note.

3 The PDE approach to singular perturbations problems

It is well known that under some regularity conditions the value function V ε of (Sε), i.e,

V ε(t, x, y) := inf{l(x(s), y(s), a(s))ds+ h(x(s), y(s))},

where l and h are given functions and the inf is being taken among all admissible controls,
satisfies the Hamilton-Jacobi-Bellman equation

(1) (HJB)ε

{
V ε
t +H

(
x, y,DxV

ε,
DyV ε

ε

)
= 0

V ε(0, x, y) = h(x, y)

where DxV
ε, DyV

ε stand for the gradient of V ε with respect to x and y respectively, and
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H is the Hamilton-Jacobi-Bellman operator

H(x, y, p, q) := max
a∈A
{−p · f(x, y, a)− q · g(x, y, a)− l(x, y, a)}.

The PDE approach to (SPP) consists in passing to the limit in the PDE (HJB)ε. Under
suitable conditions, it is possible to define an effective Hamiltonian H̄(x, p) such that the
V ε converges locally uniformly, as ε→ 0, to a solution of

(2)

{
Vt + H̄(x,DxV ) = 0
V (0, x, y) = h̄(x).

The proof of the existence of such an operator H̄, and the analysis of some of its properties,
embody a wide line of research, going back to the first works on homogenisation of PDEs
(see for example [10]) and, in particular, to the famous unpublished preprint [16] by Lions,
Papanicolaou and Varadhan.

In the paper [2], two crucial properties about the convergence of the V ε has been singled
out by the authors. One is an ergodicity property of the operator H, and therefore H̄, and
another is a property called stabilization to a constant of the pair (H,h) that allows the
possibility to define the effective initial datum h̄ for the effective Cauchy problem (2). All
these properties permit to establish the uniform convergence of V ε to the solution of the
effective equation and in some cases to prove that the effective Hamiltonian is the partial
differential operator associated to the limit control problem (S̄). However, this theory was
developed mostly for fast variables restricted to a compact set (almost all in the case of
the m-dimensional torus). Nonetheless, in many physical and financial models the a priori
knowledge of the boundedness of the fast variables does not appear to be natural according
to the empirical data. Very few has been done until now to treat the unboundedness case.

In the papers [7] and [8] the authors present an extension of the methods based on vis-
cosity solutions showed in [1, 2, 3] to singular perturbation problems that have unbounded
but uncontrolled fast variables.

4 Singular perturbations with unbounded fast variables

In my thesis, I study singular perturbations of a class of optimal stochastic control prob-
lems with finite time horizon and with unbounded and uncontrolled fast variables. The
problem I treat is for t ∈ [0, T ] and given θ∗ > 1 and ε > 0

minimize in u and ξ: Ex,y[
∫ T
t (l(Xs, Ys, us) + 1

θ∗ |ξs|
θ∗)ds+ g(XT )]

subject to

(3)

{
dXs = F (Xs, Ys, us)ds+

√
2σ(Xs, Ys, us)dWs, Xs0 = x

dYs = −1
ε ξsds+

√
1
ε τ(Ys)dWs, Ys0 = y
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where l is a running cost function satisfying the following coercivity condition

−l0 + l−1
0 |y|

α ≤ l(x, y, u) ≤ l0(1 + |y|α) for some l0 > 0

where α > 1, g represents a terminal cost and is continuous, bounded from below, and
growing like

∃Cg > 0 s.t. g(x) ≤ Cg(1 + |x|α),

and Xs ∈ Rn, Ys ∈ Rm, us is a control taking values in a given compact set U , ξ =
(ξs)0≤s≤T denotes a control process taking its values in Rm, and Ws is a multi-dimensional
Brownian motion on some probability space.

Basic assumptions on the drift F and on the diffusion coefficient σ of the slow variables
Xs are that they are Lipschitz continuos functions in (x, y) uniformly in u and satisfy the
following growth condition at infinity

|F |+ ||σ|| ≤ C(1 + |x|).

On the fast process Ys we assume that ττT = I.

Calling V ε(t, x, y) the value function of this optimal control problem, i.e.

V ε(t, x, y) = inf
u,ξ

Ex,y[
∫ T

t
(l(Xs, Ys, us) +

1

θ∗
|ξs|θ

∗
)ds+ g(XT )],

we are interested in the limit V as ε → 0 of V ε and in particular in understanding the
PDE satisfied by V . This is a singular perturbation problem for the system above and for
the HJB equation associated to it. We treat it by PDE methods and a careful analysis of
the associated ergodic stochastic control problem in the whole space Rm.

In fact, in Theorem 10.1 (see [17]) I prove that if V ε(t, x, y) is a viscosity solution of
the HJB equation then the relaxed semilimits (no standard ones!)

(4) V (t, x) = lim inf
(ε,t′,x′)→(0,t,x)

inf
y∈Rm

V ε(t′, x′, y)

and

(5) V̄ = (sup
R
V̄R)∗

(the upper semicontinuous envelope of supR V̄R) where V̄R is defined as

(6) V̄R(t, x) = lim sup
(ε,t′,x′)→(0,t,x)

sup
y∈BR(0)

V ε(t′, x′, y)

are, respectively, a supersolution and a subsolution of the effective Cauchy Problem

(7)

{
−Vt + H̄(x,DxV,D

2
xxV ) = 0 in (0,∞)× Rn

V (T, x) = g(x) in Rn.
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This procedure allow me to prove also that in some cases V ε(t, x, y) converges locally
uniformly, as ε→ 0, to the only solution V (t, x) of (7). Moreover, the effective Hamiltonian
H̄(x, p,M) is the unique constant λ such that the following ergodic PDE

(EP ) λ− 1

2
∆φ(y) +

1

θ
|Dφ(y)|θ = f(y) in Rm,

has a solution φ bounded from below, 1
θ + 1

θ∗ = 1 and f(y) = −H(x, y, p,M, 0), where
H is the Bellman Hamiltonian associated to the slow variables of (3) and its last entry
is for the mixed derivatives Dxy. Such type of equations appear in utility maximisation
problems in mathematical finance and were first studied by Naoyuki Ichihara in [Ichihara,
2012] using probabilistic and analytical arguments.
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An introduction to density

estimates for diffusion processes

Paolo Pigato (∗)

Abstract. We recall some notions in Malliavin calculus and some general criteria for the absolute
continuity and regularity of the density of a diffusion. We present some estimates for degenerate
diffusion processes under a weak Hörmander condition, obtained starting from the Malliavin and
Thalmaier representation formula for the density. As an example, we focus in particular on the
stochastic differential equation used to price Asian Options.

1 Elements of Malliavin Calculus

Malliavin calculus is an infinite-dimensional differential calculus on the Wiener space. It is
useful to investigate regularity properties of solutions of stochastic differential equations,
and its most important application is a probabilistic proof of Hörmander’s theorem.

A crucial fact in this theory is the integration-by-parts formula, which relates the
derivative operator on the Wiener space and the Skorohod extended stochastic integral.
A consequence of this is a formula which links existence and regularity of the density of a
random variable to the so-called ”Malliavin covariance matrix”.

We introduce some basic notions, referring to [8]. We consider a probability space
(Ω,F , P ), a Brownian motion W = (W 1

t , ...,W
d
t )t≥0 and the filtration (Ft)t≥0 generated

by W . For fixed T > 0, we denote with H the Hilbert space L2([0, T ],Rd). For h ∈ H we

introduce this notation for the Itô integral of h: W (h) =
∑d

j=1

∫ T
0 hj(s)dW j

s . We denote
by C∞p (Rn) the set of all infinitely continuously differentiable functions f : Rn → R such
that f and all of its partial derivatives have polynomial growth. We also denote by S the
class of random variables of the form

F = f(W (h1), ...,W (hn)),

for some f ∈ C∞p (Rn), h1, ..., hn in H, n ≥ 1. The Malliavin derivative of F ∈ S is defined

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
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as the H valued random variable given by

DF =
n∑
i=1

∂f

∂xi
(W (h1), ...,W (hn))hi.

Remark that this implies D
∫ T

0 hi(s)dWs = hi. Therefore, this expression can be seen as
the germ of a chain-rule formula and is therefore a reasonable definition for a ”derivative”.

The extension of the definition of D on a wider domain requires the introduction of
the Sobolev norm of F :

‖F‖1,p = [E|F |p + ‖DF‖pH ]
1
p where ‖DF‖H =

(∫ T

0
|DsF |2ds

) 1
2

.

It is possible to prove that D is a closable operator with respect to this norm an take the
extension of D in the standard way. We can now define in the obvious way DF for any
F in the closure of S with respect to this norm. Therefore, the domain of D will be the
closure of S.

The higher order derivative of F is obtained by iteration. For any k ∈ N, for a multi-
index α = (α1, ..., αk) ∈ {1, ..., d}k and (s1, ..., sk) ∈ [0, T ]k, we can define

Dα
s1,...,sk

F := Dα1
s1 ...D

αk
sk
F.

We denote with |α| = k the length of the multi-index. Remark that Dα
s1,...,sk

F , is a random

variable with values in H⊗k, and its Sobolev norm is defined as

‖F‖k,p = [E|F |p +
k∑
j=1

|D(j)F |p]
1
p

where

|D(j)F |2 =

∑
|α|=j

∫
[0,T ]k

|Dα
s1,...,sk

F |2ds1...dsk

1/2

.

The extension to the closure of S with respect to this norm is analogous to the first
order derivative. We denote by Dk,p the space of the random variables which are k times
differentiable in the Malliavin sense in Lp, and Dk,∞ =

⋂∞
p=1 Dk,p.

We denote with δ the adjoint operator of D, the so-called Skorohod integral. It is
possible to prove that δ coincides with the Ito integral for adapted integrands, and that
the following formula holds, for any F ∈ D1,2 and u ∈ Dom(δ) such that F ∈ L2(Ω,H):

(1) δ(Fu) = Fδ(u)− E〈DF, u〉H .

We consider a random vector F = (F1, ..., Fn) in the domain of D. We define its Malliavin
covariance matrix as follows:

γi,jF = 〈DFi, DFj〉H =
d∑

k=1

∫ T

0
Dk
sFi ×Dk

sFjds.
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We say that F is non-degenerate if its Malliavin covariance matrix is invertible and

(2) E(|det γF |−p) <∞, ∀p ∈ N.

We denote with γ̂F the inverse of γF . Using (1) it is possible to prove the following
integration by parts formula. Let F ∈ D2,2 be a scalar r.v. such that (2) holds. Then for
every G ∈ D2,2

(3) E[φ′(F )G] = E[φ(F )H(F ;G)], ∀φ ∈ C∞c (R)

where the Malliavin weights are given by

H(F ;G) = −Gγ̂F × LF + 〈D(γ̂FG), DF 〉.

Here L = −δ ◦D is the Ornstein-Uhlenbeck operator. This integration by parts formula is
really important, because if it holds it tells us that F is absolutely continuous with respect
to the Lebesgue measure and allows us to write this representation for the density:

pF (x) = E[1[x,∞)(F )H(F ; 1)].

The intuition behind this fact is the following: we first express the density as pF (x) =
E[δ0(F − x)]. Then we formally write the Dirac delta in 0 as δ0(y) = ∂y1[0,∞)(y), and
apply (3)

E[δ0(F − x)] = E[∂1[0,∞)(F − x)] = E[1[x,∞)(F )H(F, 1)].

If higher order integration by parts formula are available, they can be employed to find
analogous expressions for the derivatives of the density, iterating the procedure above.

The following multidimensional generalisation has been proved by Malliavin and Thal-
maier in [7]:

pF (x) = −E [∇Qn(F − x)H(F ; 1)] ,

where Qn denotes the Poisson kernel on Rn, i.e. the fundamental solution of the Laplace
operator ∆Qn = δ0. This is given by

Q1(x) = max(x, 0); Q2(x) = A−1
2 ln |x|; Qn(x) = −A−1

n |x|2−n, n > 2,

where An is the area of the unit sphere in Rn.

2 Application to diffusion processes

2.1 Hörmander theorem

The original motivation and the most important application of the integration by parts
mentioned in the previous section is a probabilistic proof of the Hörmander theorem.

Let Xt, t ∈ [0, T ] be the solution of the following stochastic differential equation in Rn:

X0 = x, dXt =

d∑
i=1

σi(Xt)dW
i
t + b(Xt)dt,
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with W = (W 1, . . . ,W d) ∈ Rd, X ∈ Rn. We assume infinitely differentiable coefficients
with bounded partial derivatives of all orders. We denote σ0 = b.

For f, g : Rn → Rn we recall the definition of the directional derivative of f in the
direction g as

∂gf(x) =

n∑
i=1

gi(x)∂xif(x).

The Lie bracket [f, g] in x is defined as

[f, g](x) = ∂gf(x)− ∂fg(x).

We say that the Hörmander condition holds at point x if the vector space spanned by the
vector fields

σ1, . . . , σd, [σi, σj ], 0 ≤ i, j ≤ d, [σi, [σj , σk]], 0 ≤ i, j, k ≤ d, . . .

at x is Rn.

Theorem 1 Assume that the Hörmander condition holds at the initial point x. Then for
t ∈ [0, T ] the random vector Xt has a probability distribution that is absolutely continuous
with respect to the Lebesgue measure, and the density is infinitely differentiable.

This result can be viewed as a probabilistic version of Hörmander’s theorem on the
hypoellipticity of second-order differential operators. We refer to [8] for details. The proof
relies on the fact that Xt is non-degenerate (meaning that (2) holds for F = Xt) for any
t > 0, if the Hörmander condition at x is satisfied.

Remark 2 A similar theorem applies for the density pXt(y) at y if the Hörmander
condition holds at y.

2.2 Bounds for the density

If it exists, define pt(x, y) as the density of Xt in y, with initial condition in x. Malliavin
calculus also allows to find quantitative estimates for pt(x, y). We expect these estimates
to be Gaussian, since the SDE satisfied by Xt is a diffusion driven by a Brownian motion.

We now look closer at the Hörmander non-degeneracy assumption. We say that the
Strong Hörmander condition holds at x if the vector space spanned by the vector fields

σ1, . . . , σd, [σi, σj ], 1 ≤ i, j ≤ d, [σi, [σj , σk]], 1 ≤ i, j, k ≤ d, . . .

at x is Rn. On the other hand, we say that the Weak Hörmander condition at x holds if
the vector space spanned by the vector fields

σ1, . . . , σd, [σi, σj ], 0 ≤ i, j ≤ d, [σi, [σj , σk]], 0 ≤ i, j, k ≤ d, . . .

at x is Rn (recall σ0 is the drift term). Also recall that we say that our diffusion is elliptic
if the vector space spanned by the vector fields σ1, . . . , σd is Rn. Estimates of the density
are well known under this assumption, but it is a quite demanding one. For instance,
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ellipticity implies n ≤ d, i.e. the dimension of the driving Brownian Motion must be at
least the same as the dimension of the diffusion itself. This is not true if we just suppose
the strong Hörmander condition. Indeed, we can use the brackets [σi, σj ], 1 ≤ i, j ≤ d and
their iterations to span Rn. Weak Hörmander condition allows us to use also the brackets
between diffusion and drift coefficients, and therefore it is the weakest of the three. We
have seen in the previous section that this condition is sufficient to prove existence and
regularity of the density. But is it enough to find some Gaussian bounds?

The most celebrated work on this topic is a series of three papers by Kusuoka and
Stroock in the the eighties. In [5] the authors prove, under the weak Hörmander condition,
the following upper bounds:

pt(x, y) ≤ C0(T )(1 + |x|)m0

tn0
exp

(
−D0(T )|y − x|2

t

)
Dα
y pt(x, y) ≤ Cα(T )(1 + |x|)mα

tnα
exp

(
−Dα(T )|y − x|2

t

)
where all the above constants depend on how many iterated Lie brackets we have to take
to span Rn, and on the final time T . Here Dα

y denotes the derivative of order α of pt(x, y)
with respect to y. Lower bounds of this kind, in general, are not available.

Two-sided bounds in terms of a control metric are established in [6] under strong
Hörmander conditions if the drift is generated by the vector fields of the diffusive part.
The standard control metric is defined as follows. For x, y ∈ Rn we denote by C(x, y) the
set of controls ψ ∈ L2([0, 1];Rn) such that the corresponding skeleton (ut)t∈[0,1] solution
of

dut(ψ) =

d∑
j=1

σj(ut(ψ))ψjt dt, u0(ψ) = x

satisfies u1(ψ) = y. Notice that the drift b = σ0 does not appear in the equation of ut(ψ).
We define the control (Caratheodory) distance as

dc(x, y) = inf
{(∫ 1

0
|ψs|2 ds

)1/2
: ψ ∈ C(x, y)

}
.

These metrics are really important in various fields of mathematics, having fundamental
role in particular in sub-Riemannian geometry. The following estimates are proved: there
exist a constant M ≥ 1 such that

1

M |Bd(x, t1/2)|
exp

(
−Md(x, y)2

t

)
≤ pt(x, y) ≤ M

|Bd(x, t1/2)|
exp

(
−d(x, y)2

Mt

)(4)

for (t, x, y) ∈ (0, 1]× Rn × Rn, where Bd(x, r) = {y ∈ Rn : d(x, y) < r}.

Remark 3 As we said before, this estimate holds if the drift is generated by the vector
fields of the diffusive part, meaning b =

∑
k=1d αkσk, for some α1, . . . , αd ∈ C∞b (Rn). This

is a slight generalisation of the pure-diffusion case b = 0.
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3 A diffusion process under a weak Hörmander condition

In this last section we present some original result, based on [9]. We consider a diffusion
process

(5) Xt = x+

∫ t

0
σ(Xs) ◦ dWs +

∫ t

0
b(Xs)ds,

where X is in dimension two, W is in dimension one, and ◦dWs denotes the Stratonovich
integral. This clearly implies that our diffusion cannot be elliptic, but it also implies that
the strong Hörmander condition cannot be satisfied, since σ is just a column vector. Our
non-degeneracy assumption is indeed of weak Hörmander type: we suppose that σ and
[b, σ] span R2, and we suppose it just locally, in a sense that we will specify later. We are
in a different framework respect to the classical result (4) (cf. Remark 3), since here we
do not just allow a drift, but we actually need it to have the non-degeneracy. It is thanks
to the existence of the drift that the randomness spreads in all directions and not just in
the direction of σ. There has been some interest in recent years in density estimates for
similar weak-Hörmander type models, see for instance [2] and [1].

The prototype of this kind of problems is a two dimensional system where the first
component X1 follows a stochastic dynamic, and the second component X2 is a determin-
istic functional of X1, so the randomness acts indirectly on X2. A natural application is
the equation used price the Asian option:

X1
t = x1 +

∫ t

0
σ1(X1

s ) ◦ dWs +

∫ t

0
b1(X1

s )ds, X2
t =

∫ t

0
b2(X1

s )ds.

Here X1 represents the price of a stock following a local volatility model. X2 is an average
of the underlying price over some pre-set period of time, which determines the payoff of
the so-called Asian options on X1. In this case it is easy to see that σ and [b, σ] span R2

if and only if σ1∂b2 6= 0. This is what one would expect, since the randomness should act
on X1, and X2 should see it through a dependence on X1.

There are other possible application, such as in [3], [4]. These papers deal with a
stochastic Hodgkin-Huxley model for the functioning of a neuron: X2 is the concentration
of some chemicals resulting from a reaction involving the first component X1. Differently
from our setting, though, there are several measurements corresponding to the input X1,
so X2 is multi-dimensional. The pattern, however, is similar.

We take a control φ ∈ L2[0, T ], and the associated skeleton path solution of

(6) xt(φ) = x+

∫ t

0
σ(xs(φ))φsds+

∫ t

0
b(xs(φ))ds.

We are interested in a tube estimate for (5), which is still an open problem under this
weak non-degeneracy assumption. With tube estimate we mean that we are interested in
P
(
supt≤T ‖Xt − xt(φ)‖ ≤ R

)
. Several works have considered this subject, starting from

Stroock and Varadhan in [10]. For them ‖ · ‖ is the Euclidean norm, but later on different
norms have been used to take into account the regularity of the trajectories. This is
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somehow true also in our case. Indeed, because of the weak Hörmander framework, our
diffusion is non-isotropic. This means that it moves with different speeds in different
directions. More precisely, it moves with speed t1/2 in the direction σ and t3/2 in the
direction [b, σ]. To account of this fact, we have to introduce a suitable norm. For any
R > 0, we denote with AR(x) the matrix

(
R1/2σ(x), R3/2[b, σ](x)

)
. For fixed R, since we

suppose the weak Hörmander condition and AR(x) is invertible, we associate to AR(x)
the norm

|ξ|AR(x) =
√
〈(AR(x)AR(x)T )−1ξ, ξ〉 = |A−1

R (x)ξ|

on Rn. This is what we need, because it allows us to weight the two time scales in the
appropriate way. Let us have a closer look at this norm for the Asian option SDE, i.e.
σ2(x) = 0:

AR(x) =
(
R1/2σ(x), R3/2[b, σ](x)

)
=

(
σ1(x1)R1/2 (. . . )R3/2

0 σ1∂b(x1)R3/2

)
.

In this case the associated norm is equivalent to |ξ|∗ = |(R−1/2ξ1, R−3/2ξ2)|. Here it is
easier to see what is going on. The first component, following a diffusive dynamic, must
be weighted according to the time scale t1/2. The second component, which is integrated
in time once more, must be weighted according to the time scale t1/2×t = t3/2. Analogous
norms appear, in a multidimensional framework, in [2]. Just remark that the results that
we are going to state here hold for a more general model in the sense that we allow σ2 6= 0.

We suppose σ, b differentiable three times, denote l(x) the smallest eigenvalue of
A(x) = (σ, [b, σ])(x), and n(x) =

∑3
k=0

∑
|α|=k(|∂αx b(x)|+ |∂αxσ(x)|). We assume that:

H1 Locally uniform weak Hörmander condition: l(y) ≥ lt, along (xt(φ))t∈[0,T ].

H2 Locally uniform bounds for derivatives: n(y) ≤ nt, along (xt)t∈[0,T ].

H3 Geometric condition on volatility: ∃κσ : R2 → R s. t.

∂σσ(x) = κσ(x)σ(x).

We suppose w.l.o.g. that |κσ(x)| ≤ n(x), |κ′σ(x)| ≤ n(x) (this is a consequence of
H2). If σ(x) = (σ1(x), 0), i.e. the Asian option stochastic differential equation, this
property holds true with κσ = σ′1/σ1.

H4 Control on the growth of bounds: we suppose |φ·|2, l·, n· ∈ L(µ, h), for some h ∈
R>0, µ ≥ 1, where

L(µ, h) = {f(t) ≤ µf(s) for |t− s| ≤ h}

Notice that the above hypothesis do not involve global controls of our bounds on R2: they
concern the behaviour of the coefficients only along the skeleton path.

Under assumptions H1, H2, H3 we have the following Gaussian bounds for the density
in short time. Define, for fixed δ, x̂ = x+ δb(x).
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Theorem 4 There exist constants L,L1, L2,K1,K2, δ
∗ such that: for any r∗ > 0, for

δ ≤ δ∗ exp
(
−Lr2

∗
)
, for |y − x̂|Aδ(x) ≤ r∗,

K1

δ2
exp

(
−L1|y − x̂|2Aδ(x)

)
≤ pXδ(z) ≤

K2

δ2
exp

(
−L2|y − x̂|2Aδ(x)

)
.

Using this estimate we are able to prove the following result for the tube in the AR-
matrix norm:

Theorem 5 We assume that H1, H2, H3, H4 holds, with xt(φ) given by (6). There

exist K, q universal constants such that for Ht = K
(
µnt
lt

)q
, for R ≤ R∗(φ)

exp

(
−
∫ T

0
Ht

(
1

R
+ |φt|2

)
dt

)
≤

P

(
sup
t≤T
|Xt − xt(φ)|AR(xt(φ)) ≤ 1

)
≤

exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)

Both of these theorems can be stated in a control metric as well, which is a variant of the
Caratheodory distance which looks appropriate to our framework. For φ ∈ L2((0, 1),R2),
we define the norm

‖φ‖(1,3) =
∥∥(φ1, φ2)

∥∥
(1,3)

=
∥∥∥(|φ1|, |φ2|1/3)

∥∥∥
L2(0,1)

.

and, given A(x) = (σ(x), [b, σ](x)), the set

CA(x, y) = {φ ∈ L2((0, 1),R2) : dvs = A(vs)φsds, x = v0, y = v1}.

We define the control norm as

dc(x, y) = inf
{
‖φ‖(1,3) : φ ∈ CA(x, y)

}
.

Remark that this distance accounts of the different speed in the [b, σ] direction. We define
also the following quasi-distance (which is naturally associated to the norm | · |AR()):

d(x, y) ≤
√
R⇔ |x− y|AR(x) ≤ 1.

It is possible to prove that d and dc are locally equivalent, and so we can re-state Theorem
5 as follows:
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Corollary 6 For Ht = K
(
µnt
lt

)q
, with K, q universal constants, for small R it holds

exp

(
−
∫ T

0
Ht

(
1

R
+ |φt|2

)
dt

)
≤

P

(
sup

0≤t≤T
dc(Xt, xt(φ)) ≤

√
R

)
≤

exp

(
−
∫ T

0

1

Ht

(
1

R
+ |φt|2

)
dt

)
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Semistable degenerations of K3 surfaces

Genaro Hernández Mada (∗)

The purpose of these notes is to present an introduction to the study of semistable
degenerations of K3 surfaces over the complex numbers. More particularly, given a
semistable degeneration of K3 surfaces

π : X → ∆,

we shall state a classification of the special fiber X0 in terms of monodromy (see Theo-
rem 6).

Since the purpose is not to give a detailed proof, we have omitted details about interme-
diate results. In particular, we don’t give a proof for the exactness of the Clemens-Schmid
sequence, which the most important tool to prove the main theorem. The main reference
for this is [11].

We assume the reader familiar with basic notions of algebraic topology, and in par-
ticular with singular homology and cohomology with coefficients in a ring. For some
Hodge-theoretical reasons, we mainly use rational coefficients. Good references for these
notions are [5] and [8].

We have divided these notes in two sections. In the first one, we give the general
geometric notions to understand the main result, such as complex manifolds, algebraic
varieties and K3 surfaces. In the second one, we give the definition of semistable degen-
eration and we state the results concerning the particular case of K3 surfaces, getting at
the end to the main theorem.

1 Geometric background

1.1 Complex manifolds

We begin with a basic definition in complex geometry:

Definition 1 A complex manifold of dimension n is a second countable Hausdorff topo-
logical space X such that there exists an open covering {Ui}i∈I together with homeomor-
phisms φi : Ui → Bn, where

Bn = {(z1, ..., zn) ∈ Cn| |z1|2 + · · ·+ |zn|2 < 1},
(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:

. Seminar held on December 17th, 2014.
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with the property that for any pair i 6= j such that Ui ∩ Uj 6= ∅, the mapping φj · φ−1
i is

holomorphic.

Remark 1 One may define a C∞-differentiable manifold (or more generally, Ck-differentiable
manifold, for some k ∈ N) by requiring Bn to be the real n-dimensional unit ball, and the
transition maps φj · φ−1

i to be C∞ (resp. Ck). In particular, any complex manifold of
dimension n is a C∞-differentiable manifold of dimension 2n.

Remark 2 The above definitions allow to speak of holomorphic maps between complex
manifolds and of C∞-differentiable functions between real manifolds.

Example 1 The simplest examples of complex manifolds are Bn itself, Cn, and the poly-
disc B1×· · ·×B1. It is important to note that these three examples are essentially different
one from another as complex manifolds (i.e., we cannot find a holomorphic function with
holomorphic inverse between two of them), while the real n-ball, Rn and the real polydisc
are essentially the same (i.e, there exists a C∞ bijection with C∞ inverse between any two
of them).

Example 2 If k = R or C, we define the projective n-space Pnk as the quotient (kn+1 −
{0})/ ∼, where x ∼ y iff y = λx, for some λ ∈ k − {0}. Then, PnC is a complex manifold
of dimension n, PnR is a C∞ manifold of dimension n, and there is a natural embedding
PnR ↪→ PnC. In particular, we may identify P1

C with the Riemann sphere, and via this
embedding, P1

R is an equator.

Example 3 Let P ∈ C[X1, ..., Xn] be polynomials in n variables with complex coefficients.
Suppose that for any z = (z1, ..., zn) ∈ Cn, the vector of the partial derivatives ∂P

∂Xi
evaluated at z is not 0. Then, the set

{z ∈ Cn|P (z) = 0}

with its induced topology is a complex manifold.

This is an example of a non-singular (or smooth) affine algebraic variety. If we drop the
assumption on the partial derivatives of P , we get a more general notion of affine algebraic
variety, allowing singularities. This is not anymore an example of complex manifold, since
these cannot have singularities, by definition. For example,

{(x, y) ∈ C2|xy = 0}

is an affine algebraic variety, but it is not a complex manifold, since around the point
(0, 0), any open neighbourhood is not homeomorphic to an open ball.
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1.2 Algebraic Varieties

Moreover, we can define algebraic varieties as the set of points in which a number of
polynomials P1, ..., Pr ∈ C[X1, ..., Xn] vanish simultaneously.

If X is a complex manifold of dimension 1, we shall call it a curve, and if it is of
dimension 2, we shall call it a surface. Note that, in this sense, a curve is of real dimension
2, so it would be a surface as a real manifold. In these notes, we shall work mainly with
complex manifolds, and unless otherwise stated, when we refer to a curve or surface, it is
in the complex sense. If X is also an algebraic variety, we shall say that it is an algebraic
curve (resp. algebraic surface).

Example 4 An example of an algebraic curve is that of elliptic curve. One may define
it as an algebraic curve defined by an equation of the type

y2 = x3 − px− q.

This is a very simple way of defining them, but they are object of study of current research.
If the reader is interested, a good reference is [14].

In the context of algebraic geometry, an important notion is that of birational maps.
To have the precise notion, see [4], but for our purposes, it is enough to think that two
varieties X,Y are birationally equivalent (also called simply birational) if there are dense
open subsets U ⊂ X, V ⊂ Y isomorphic to each other.

Example 5 An example of an algebraic surface is that of ruled surfaces. If C is a smooth
curve, then a ruled surface is a non-singular surface together with a map X → C such
that all the fibers are birationally equivalent to P1

k.

Definition 2 An algebraic curve (resp. surface)X is rational if it is birationally equivalent
to P1

k (resp. P2
k).

1.3 Definition of K3 Surface

Now we shall give the definition of K3 surface. Here we shall denote by OX the structural
sheaf (i.e., the sheaf of holomorphic functions on X) and by Ωn

X the sheaf of holomorphic
n-forms on X. For these notions, see for example [16].

Definition 3 A K3 surface is a connected, compact complex surface X such that its first
Betti number is b1(X) = 0 and Ω2

X
∼= OX .

The name of K3 surface was introduced by André Weil in [17], and it was in honor
of three algebraic geometers: Kummer, Kähler and Kodaira; and also in honor of the
mountain named K2 in Pakistan.

Example 6 Some examples of K3 surfaces are: any intersection of a quadric and a cubic
in P4, or a quartic in P3.
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2 Semistable degenerations

Let ∆ be the complex open unit disc centered at 0, and X a complex manifold of dimension
n+ 1.

Definition 4 A semistable degeneration is a proper, flat, holomorphic map π : X → ∆,
such that π−1(t) = Xt is a smooth complex variety for all t 6= 0, and X0 = π−1(0) has
smooth irreducible components intersecting transversally in such a way that π is locally
defined by the equation

t = x1 · · ·xk

Example 7 If X is defined by the equation xy− t = 0 in three variables, and π is defined
by t, then it is clear that π is a semistable degeneration.

When the fibers are K3 surfaces we have the following result:

Theorem 1 Let π : X → ∆ be a semistable degeneration with Xt a K3 surface for all
t 6= 0. Then, X is birational to a semistable degeneration with special fiber X0 being one
of the followng:

I) X0 is smooth

II) X0 = Y0 ∪ Y1 ∪ · · · ∪ Yk, where Y0, Yk are rational surfaces, Y1, .., Yk−1 are elliptic
ruled, with Yα ∩ Yα−1 and Yα ∩ Yα+1 sections of the ruling.

III) All components of X0 are rational surfaces, Yi∩(∪j 6=i)Yj is a cycle of rational curves,
and |Γ| = S2

A natural question now is how to get a criterion to decide which of the three types of
special fiber we have, given a semistable degeneration of K3 surfaces. The one that we
shall give here is in terms of cohomology, and more specifically, the monodromy operator
on the second cohomology group of a generic fiber. The method that we use to get this is
explained in [11].

Let X be a complex manifold of dimension n + 1 and ∆ the complex unit disc. Let
π : X → ∆ be a semistable degeneration, i.e., a flat, proper, holomorphic map such
for any t 6= 0, Xt = π−1(t) is a smooth complex variety, and X0 = π−1(0) has smooth
irreducible components intersecting transversally in such a way that π is locally defined
by the equation

t = x1 · · ·xk.

In this case, the restriction of π to the punctured disc π∗ : X∗ → ∆∗ is a C∞ fibration, so
π1(∆∗) acts on Hm(Xt) for any t 6= 0. The Picard-Lefschetz transformation, denoted by
T : Hm(Xt) → Hm(Xt) is the map induced by the canonical generator of π1(∆∗). Then,
one can prove (see for example [7]) that T is unipotent, i.e., (T − I)m+1 = 0, where I is
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the identity operator. This allows to define a monodromy operator as

N := log T = (T − I)− 1

2
(T − I)2 +

1

3
(T − I)3 − · · · ,

which is in fact a finite sum. It is also clear that N is nilpotent, hence we can endow
Hm(Xt) with an increasing filtration

0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2m = Hm(Xt)

which is the unique filtration such that:

1) N(Wk) ⊂Wk−2.

2) Nk induces an isomorphism on the graded parts:

Grm+k(H
m(Xt))

∼−→ Grm−k(H
m(Xt)).

One can make an explicit description of this filtration. See for example [11].
We define a filtration on Hm(X0) via a spectral sequence. Denote by Y1, ..., Yr the

irreducible components of X0, which we assumed to be smooth and proper. We define the
codimension p stratum of X0 as

X [p] :=
⊔

i0<···<ip

Yi0 ∩ · · · ∩ Yip .

We define Ep,q0 = Aq(X [p]), the C∞ q-forms on X [p]. Then, we have dp,q0 : Ep,q0 → Ep,q+1
0

the exterior derivative. We also have morphisms δp,q0 : Ep,q0 → Ep+1,q
0 induced by the

combinatorial formula

(δp,q0 ω)|Yj0∩···∩Yjp+1
=

p+1∑
k=0

(−1)kω|
Yj0∩···∩Ŷjk∩···∩Yjp+1

where Ŷjk means that we ignore this term. This defines a double complex (E•,•0 , d, δ) and
we have the following:

Theorem 2 The spectral sequence with

Ep,q1 = Hq(X [p])

degenerates at level 2 and it converges to H∗(X0).

By letting

Wk =
⊕
q≤k

E∗,q0 ,

we get a filtration on the simple complex associated to the double complex (E•,•0 , d, δ),
and consequently a filtration on Hm(X0).

One can construct a retraction r : X → X0 which induces isomorphisms

(1) r∗ : Hm(X0)
∼−→ Hm(X)
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(2) r∗ : Hm(X)
∼−→ Hm(X0).

The details of this construction are in [3].
The isomorphism (2) allows to define a filtration on Hm(X0) ∼= Hm(X) =: Hm. Indeed,

we use Poincaré duality and define

W−k(Hm) = Ann(Wk−1(Hm)) = {h ∈ Hm|(Wk−1(Hm), h) = 0}.

Now that we have filtrations on Hm, Hm and Hm
lim := Hm(Xt). We shall define maps

relating them and respecting the filtrations in the following sense:

Definition 5 Let H,H ′ vector spaces with filtrations that we denote by W• for both. A
morphism of filtered vector spaces of type r is a linear map φ : H → H ′ such that for all
k,

φ(Wk(H)) = Wk+2r(H
′) ∩ Im(φ).

We define a morphism α : H2n+2−m → Hm as the composite

H2n+2−m(X0)
p−→ Hm(X,X −X0) −→ Hm(X),

where p is the Poincaré duality map, and the second is the natural morphism.
We define β : Hm

lim → H2n−m as the composite

Hm(Xt)
pt−→ H2n−m(Xt)

i∗−→ H2n−m(X),

where i∗ is induced by the natural inclusion Xt ↪→ X and pt is the Poincaré duality
morphism. Then, we have the following:

Theorem 3 (Clemens-Schmid) The maps α, i∗, N, β are morphisms of filtered vector
spaces of type n+ 1, 0,−1,−n, respectively, and the sequence

(3) · · · → H2n+2−m
α−→ Hm i∗−→ Hm

lim
N−→ Hm

lim
β−→ H2n−m

α−→ Hm+2 → · · ·

is exact.

Remark 3 One can state the Clemens-Schmid exact sequence as an exact sequence of
Mixed Hodge Structures. This explain the notation of Hm

lim, since that term is considered
with the limit Mixed Hodge structure, defined by Steenbrink in [15].

Since we are interested in studying surfaces, now we want to restrict ourselves to
the case n = 2. By using the exact sequence (3) for H2, restricted to the elements of
the filtrations on each term, and the properties of the graded parts, one can prove the
following monodromy criteria:

Theorem 4 Let Γ be the dual graph of X0 and denote

Φ = dim ker(H1(X [0])→ H1(X [1])),
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q =
1

2
h1(X [0]), g =

1

2
h1(X [1]).

Then,

(a) N = 0 on H1
lim if and only if h1(|Γ|) = 0 if and only if b1(Xt) = Φ.

(b) N2 = 0 on H2
lim if and only if h2(|Γ|) = 0.

(c) N = 0 on H2
lim if and only if h2(|Γ|) = 0 and Φ + 2g = 2q.

Now we apply these monodromy criteria to the case of semistable degenerations of K3
surfaces. In order to use it, we first need the following classification:

Theorem 5 A semistable degeneration of K3 surfaces is birational to one for which the
central fiber X0 is one of three types:

• Type I. X0 is a smooth K3 surface.

• Type II. X0 = Y0 ∪ · · · ∪ Yk+1, where Yα intersects only Yα±1, and each Yα ∩ Yα+1

is an elliptic curve. Y0, Yk+1 are rational surfaces, and for 1 ≤ α ≤ k, Yα is ruled
with Yα ∩ Yα+1 and Yα ∩ Yα−1 sections of the ruling.

• Type III. All components of X0 are rational surfaces, Yi ∩ (∪j 6=iYj) is a cycle of
rational curves, and |Γ| = S2.

Finally by applying the monodromy criteria to these three cases, we get a classification
of the special fiber in terms of the monodromy operator N :

Theorem 6

(a) X0 is of type I if and only if N = 0 on H2
lim.

(b) X0 is of type II if and only if N 6= 0, but N2 = 0 on H2
lim.

(c) X0 is of type III if and only if N2 6= 0.

Proof. We shall prove that if N = 0 on H2
lim, then X0 is neccesarily of type I; if N 6= 0

and N2 = 0, then X0 is necessarily of type II; and if N2 6= 0, then X0 is necessarily of
type III. This shall prove the equivalence, since we know that we can be only in one of
these three cases.

First assume that X0 is of type I. Then, X [0] = Xs, X
[1] = ∅ and the dual graph Γ is

only one point. In this case, the spectral sequence has the form

Ep,q∞ = Ep,q1 = Hq(X [p]) =

{
0 if p ≥ 1
Hq(Xs) if p = 0

and this gives immediately that Φ = dimGr1H
1 = dimE0,1

2 = 0. Since H1(Xs) =
H1(X [1]) = 0, and h2(|Γ|) = 0, we conclude that N = 0, by Theorem 4 (iii).
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Now assume that X0 is of type II. In this case, it is clear that the dual graph is
homeomorphic to [0, 1]. In particular, h2(|Γ|) = 0 and N2 = 0 by Theorem 4 (ii). By
definition of the type II, X [1] is the disjoint union of j+1 elliptic curves, hence h1(X [1]) =
2j + 2. Since X0 and Xj+1 are rational surfaces, we have

h1(X [0]) =

j∑
i=1

h1(Xi),

but the Xi’s are ruled, with the double curves rulings. Then, h1(X [0]) = 2j and we get
h1(X [0])− h1(X [1]) = −2, but Φ cannot be negative, hence

Φ 6= h1(X [0])− h1(X [1])

and N 6= 0. Finally, assume that Xs is of type III. In this case, h2(|Γ|) = h2(S2) = 1 6= 0,
hence N2 6= 0. This completes the proof.

By the preceding theorem, we can conclude that for semistable degenerations of K3
surfaces, one can obtain a classification of the special fiber in terms of monodromy. Now
we give an example of how this theorem can be used to study other kind of surfaces.

Example 8 Let π : X → ∆ be a semistable degeneration of Enriques surfaces. We assume
moreover that π is weakly projective. One can check that in this case, the monodromy
operator is always zero. However, one can get a classification as in the case of K3 surfaces,
i.e., X is birational to one of the following cases (see [10]):

i) X0 is a smooth Enriques surface.

ii) Flower pot.

iii) Elliptic chain with one rational component.

iv) Rational chain.

v) Polyhedral

vi) Polyhedral with boundary.

Moreover, one can construct a double cover Y → ∆, birational to a semistable degeneration
ofK3 surfaces. In particular, we have a correspondence: cases i) and ii) give a degeneration
of type I); cases III) and iv) give a degeneration of type II); and cases v) and vi) give a
degeneration of type III). This means that the type of degeneration is distinguished by
the monodromy N on the associated family of K3 surfaces. Namely, in cases i) and ii),
we have N = 0; in cases iii) and iv), we have N 6= 0, N2 = 0; in cases v) and vi), we have
N2 6= 0, N3 = 0.
One can note, however, that if one wants a complete characterisation, one needs more
information, unlike the case of K3 surfaces. A similar treatment to this can be done
for hyperelliptic surfaces. For more details on both the case of Enriques and the case of
hyperelliptic surfaces, see [10].
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One may wonder if it is possible to do this entirely in an arithmetic setting, i.e., to
get an arithmetic version of Theorem 6. This is beyond the purpose of these notes, but it
is natural question that we are currently working on. Some references on how to address
this problem are [1], [2], [6]. A result in this direction was obtained by Pérez Buend́ıa in
[13], where he uses a trascendental method to obtain the arithmetic result. In particular,
he uses Theorem 6, so the classical result can be used to prove his main theorem.
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Shape sensitivity analysis

for vibrating plate models

Davide Buoso (∗)

The classical formulation of the vibrating clamped plate problem is the following

(1)


∆2u = γu, in Ω,
u = 0, on ∂Ω,
∂u
∂n = 0, on ∂Ω,

in the unknowns u (the eigenfunction), γ (the eigenvalue). Here Ω ⊂ R2 represents the
shape of the plate, u the displacement, and γ the vibration frequency. The differential
problem (1) comes from the study of a vibrating plate with clamped edges, within the
so-called Kirchhoff-Love model. Recall that its weak formulation is∫

Ω
∆u∆ϕ = γ

∫
Ω
uϕ, ∀ϕ ∈ H2

0 (Ω).

We refer to [10, 11] for an introduction to the problem.
Using the Reissner-Mindlin model instead, the classical formulation of the vibrating

clamped plate problem is

(2)

 −
µ
12∆βt − µ+λ

12 ∇divβt − µ k
t2

(∇wt − βt) = t2γ
12 βt, in Ω,

−µ k
t2

(∆wt − divβt) = γwt, in Ω,
βt = 0, wt = 0, on Ω,

in the unknowns (βt, wt) (the eigenfunction), γ (the eigenvalue). Here wt represents the
displacement, βt the fiber rotation, µ, λ are the Lamé constants of the material, t is the
thickness of the plate and k is a correction factor. We recall that the weak formulation of
the Reissner-Mindlin vibrating clamped plate problem (2) is

(3)
µ

12

∫
Ω
∇βt : ∇ηdx+

µ+ λ

12

∫
Ω

divβtdivηdx

+
µk

t2

∫
Ω

(∇wt − βt) · (∇v − η)dx = γ

∫
Ω

(
wtv +

t2

12
βt · η

)
dx,

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on January 28h, 2015.
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∀(η, v) ∈ (H1
0 (Ω))2 ×H1

0 (Ω), where A : B =
∑2

i,j=1 aijbij .

We remark that, even if the Reissner-Mindlin model gives a system of equation, from a
numerical point of view it seems better than the Kirchhoff-Love model, because it is of the
second order, and therefore easier to treat using finite elements methods. Note also that
the Kirchhoff-Love model assumes βt = ∇wt, while the Reissner-Mindlin one drops such
hypotesis. This assumption is satisfied for extremely thin plates, and therefore problem
(2) is better to study moderately thick plates. However, we recall the following result from
[1] (see also [2]).

Theorem 1 Suppose wt, βt and ζt satisfy

µ

12

∫
Ω
∇βt : ∇ηdx+

µ+ λ

12

∫
Ω

divβtdivηdx+

∫
Ω
ζt · (∇v − η)dx =

∫
Ω
gvdx,

where ζt = µk
t2

(∇wt − βt). Then

βt ⇀ β0 in (H1
0 (Ω))2,

wt ⇀ w0 in H1
0 (Ω),

ζt ⇀ ζ0 in H−1(div; Ω),

where w0, β0 and ζ0 satisfy

µ

12

∫
Ω
∇β0 : ∇ηdx+

µ+ λ

12

∫
Ω

divβ0divηdx+

∫
Ω
ζ0 · (∇v − η)dx =

∫
Ω
gvdx,

and
β0 = ∇w0.

As a consequence we get
2µ+ λ

12
∆2w0 = g.

In particular, this theorem tells us that the solutions of the Reissner-Mindlin clamped
plate problem converge to those of the Kirchhoff-Love one, as t → 0. This holds also for
eigenfunctions and eigenvalues (cf. [9, Section 2]).

Our main interest is to study the dependence of the eigenvalue of problem (3) with
respect to shape perturbation. In particular, we aim at stability estimates in the spirit of
[5, 6, 7]. Note that such estimates for problem (1) were already proved in [8]. We also
remark that the results shown here appeared in [4].

Let us start by the study of the map

φ 7→ γn[φ(Ω)],

where φ : Ω 7→ φ(Ω) is a diffeomorphism. Which regularity should we impose on φ? It
seems that, since only Sobolev spaces H1 are involved (the problem is of the second order),
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the use of bi-Lipschitz homeorphism should give the desired results. The corresponding
pull-back operator from φ(Ω) to Ω is

(β,w) 7→ (β ◦ φ,w ◦ φ).

Note that such construction is the straight adaption to the case of systems of the arguments
used in [8] (see also [3]). The best estimate that can be obtained using such a pull-back is

|γn[φ(Ω)]− γn[Ω]| ≤ c

t2
γn[Ω]‖∇φ− I‖L∞(Ω).

We observe that, as t → 0, the coefficients of problem (3) are diverging, and therefore
in principle we could not obtain a better result. However, we already know a priori that
the eigenvalues converge to those of problem (1) (up to a multiplicative constant), and
therefore we should expect a better estimate to hold. To this aim, we note that the
unknown βt converge to the gradient of wt, hence we should treat it as a gradient rather
than a vector. So the good pull-back seems to be

β 7→ (β ◦ φ) · (∇φ).

Note that, in order to use such transformation, we need φ to be at least of class C1,1. We
have the following

Theorem 2 Let
δ(φ) = max

1≤|α|≤2
sup
x∈Ω
|Dα(φ(x)− x)|.

There exists a constant c > 0 independent of φ, n, t such that

(4) |γn[φ(Ω)]− γn[Ω]| ≤ cγn[Ω]δ(φ),

provided δ(φ) < c−1.

Note that, thanks to the uniformity of estimate (4) with respect to t, as a bypass
product we obtain again the stability estimates for problem (1) (cf. [8]).

In general, even if two open sets are known to be diffeomorphic, it is not easy to con-
struct diffeomorphisms φ and to control the quantity δ(φ) via explicit geometric quantities.
However, such a construction is possible in the so-called atlas class. We refer to [8] for the
definition of atlas class, and to [5] for the construction of diffeomorphisms among open
sets in such a class.

For our purposes, we briefly recall that an atlas A is defined as

A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1),

where Vj are cuboids, rj are rotations, and ρ > 0, s, s′ ∈ N are other parameters. In
particular, an open set Ω belongs to the class C(A) if rj(Ω ∩ Vj) is the subgraph of a
continuous function gj for any j = 1, . . . , s. We remark that, in a similar way, it is also
possible to define the classes C1(A), C2(A), C0,1(A), C0,α(A) and so forth. In C(A) we
define the atlas distance
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dA(Ω1,Ω2) = max
j=1,...,s

‖gj1 − gj2‖∞.

Note that (C(A), dA) is a complete metric space.
Then we have the following

Theorem 3 Let A be fixed. Then for each n ∈ N there exists c > 0 independent of n, t
such that

|γn[Ω1]− γn[Ω2]| ≤ cmax{γn[Ω1], γn[Ω2]}dA(Ω1,Ω2),

for all Ω1,Ω2 ∈ C(A) such that dA(Ω1,Ω2) ≤ c−1.

We remark that, even though the atlas distance is quite easily computable, it is not a
clear geometric quantity, since it obviously depends on the chosen atlas. In this sense, we
recall that, given A,B ⊂ R2, the Hausdorff distance between A and B is defined as

dH(A,B) = max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
.

Another geometric quantity, which turns out to be interesting in the frame of stability
estimates, is the so-called lower Hausdorff deviation, which is defined as

dH(A,B) = min

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
.

In order to state the following result, we recall that an open set Ω belongs to the class
CωM (A) if

|gj(x)− gj(y)| ≤Mω(|x− y|), ∀x, y ∈ rj(Ω ∩ Vj),

for any j = 1, . . . , s, where M is a positive constant, and ω is a modulus of continuity.

Lemma 4 (Burenkov, Lamberti) There exists K > 0 such that

dH(Ω1,Ω2) ≤ dA(Ω1,Ω2) ≤ Kω(dH(∂Ω1, ∂Ω2)),

for all Ω1,Ω2 ∈ CωM (A).

By means of the previous lemma, it is easy to prove the following

Theorem 5 Let A, ω, M be fixed. Then there exists c > 0 independent of n, t such that

|γn[Ω1]− γn[Ω2]| ≤ cmax{γn[Ω1], γn[Ω2]}ω(dH(∂Ω1, ∂Ω2)),

for all Ω1,Ω2 ∈ CωM (A) such that dH(∂Ω1, ∂Ω2) ≤ c−1.

We conclude observing that, in the case Ω1,Ω2 ∈ CωM (A) satisfy

(Ω1)ε ⊂ Ω2 ⊂ (Ω1)ε,
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where

(Ω1)ε = {x ∈ Ω1 : d(x, ∂Ω1) > ε},
(Ω1)ε = {x ∈ RN : d(x,Ω1) < ε},

then our estimates can be rewritten in a nicer form, namely

|γn[Ω1]− γn[Ω2]| ≤ cnω(ε).
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Metastability of the Ising model

on random graphs at zero temperature

Sander Dommers (∗)

Abstract. In this note, which is mainly based on [6], a random graph model known as the con-
figuration model is introduced. After this, we discuss the Ising model, which is a model from
statistical physics where a spin is assigned to each vertex in a graph and these spins tend to align,
i.e., take the same value as their neighbors. It is especially interesting to study the Ising model on
random graphs. We discuss some properties of this model. In particular, we study the dynamics
and metastability in this model when the interaction strength goes to infinity. This corresponds
to the zero temperature limit in physical terms.

1 Introduction

In the past decades complex networks and their behavior have attracted much attention.
In the real world many of such networks can be found, for instance as social, information,
technological and biological networks. In [12], an overview of many networks and their
properties is given. It turns out that many of these networks behave more or less similarly.
For example, most of these networks are so-called small worlds, which means that it takes
only small number of connections to go from any node in the network to any other node.
They are also very inhomogeneous, many nodes only have a small number of connections,
but there are also nodes, called hubs, with a huge number of connections. Such networks
are also called scale free.

Since these networks are very complex, many random graph models have been proposed
to study them. The most well known is the Erdős-Rényi random graph [9], where between
every pair of vertices an edge is formed independently with a certain probability. One
drawback of this model is that it does not produce scale-free graphs. In this note we
focus on the configuration model, where this problem is easily solved, since the number
of connections of all the vertices in the graph is specified in advance before constructing
the graph, and hence the scale-free property can be given as an input to the model. The
exact construction of the configuration model is described below.

(∗)Università di Bologna, Dipartimento di Matematica, Piazza di Porta San Donato 5, 40126 Bologna,
BO, Italy. E-mail: . Seminar held on February 11th, 2014.
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Not only the structure of these networks is interesting, also the behavior of processes
living on these networks is a fascinating subject. Processes one can think of are opinion
formation, the spread of information and the spread of viruses.

In this note, we focus on a simple model for opinion formation known as the Ising
model. This model was first used to describe magnetization in a simple way, but has later
been used as a model for many other phenomena, see [13, 14, 15] for an extensive history.
This model can, for example, be seen as a situation where people can have two different
opinions. They might prefer to vote for left or right wing political parties, for example.
Every individual’s opinion is influenced by that of their friends. If, for example, most of
someones friends vote for a right wing party, it is more likely this person will also vote for
that party, and hence it is less likely that this person will vote for a left wing party. Also
external sources such as the media can influence peoples opinions.

We focus on the dynamics of this model in the situation where it is very unlikely, but
not impossible, that someone goes against the majority opinion among that persons friends
and against the external influence. In this case the stable situation is when everyone has
the same opinion that is also the same as the external influence dictates. If everyone
has the same opinion, but this is different from the external influence, the system is in a
metastable situation. Nobody likes to change their opinion first because that would cause
a disagreement with their friends, but at the same time everyone wants to change their
opinion because the external influence tells them to. It can therefore take a very long
time for the system to reach the stable situation if the system starts from the metastable
situation. How long this will take is a question we answer in this note for some specific
choices of all the parameters involved.

This note is mainly based on [6] and this introduction is partly taken from [8].

2 Configuration model

In the configuration model the degrees of the vertices are prescribed and the graph is then
chosen randomly among all graphs with these degrees. More precisely, the configuration
model is constructed as follows [3].

Start with n vertices labeled 1, . . . , n and write {1, . . . , n} = [n]. Let D be a random
variable with

(2.1) P[D = k] = pk, k = 1, 2, . . . .

Next, assign to assign to each vertex i ∈ [n] Di half-edges, where the Di are independent
and identically distributed with the same distribution as D, so that vertex i has degree
Di. Let Ln =

∑n
i=1Di be the total degree and assume that Ln is even. If this is not the

case, add 1 to Dn. Since we are interested in the limit n→∞ this will hardly change the
graph.

With Ln even we can now construct a graph. We do this by connecting one of the
half-edges to one of the other Ln − 1 half-edges uniformly at random. We repeat this
procedure of pairing up unpaired half-edges uniformly at random until all half-edges have
been connected and denote the resulting graph by Gn.
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In the next figure, for example, the first two edges have been formed and the dashed
line will form an edge with one of the remaining half-edges.

As becomes clear from this example, this construction does not necessarily result in
a simple graph, because both self-loops and multiple edges between two vertices might
occur. However, the number of times this happens is not growing with n [10] and hence
is negligible.

An event An is said to hold with high probability (whp), if

(2.2) lim
n→∞

P[An] = 1,

where P denotes the measure of selecting a random graph according to the configuration
model described above.

For a graph Gn, the (edge) boundary ∂eA of a set A ⊆ [n] consists of all edges between
a vertex in A and a vertex outside of A, i.e.,

(2.3) ∂eA = {(i, j) ∈ En | i ∈ A, j /∈ A}.

An important property of the graphs of interest is that the boundaries of any subset
of the vertices is large compared to the number of vertices in this subset. Such graphs are
called expander graphs. The formal definition of an expander graph is as follows.

Definition 2.1 (Expander graph) A graph Gn is a (δ, λ)-expander graph if for all A ⊂ [n]

with δ ≤ |A|n ≤
1
2 ,

(2.4)
|∂eA|
|A|

≥ λ.

Graphs chosen according to the configuration model where the degrees are uniformly
bounded and at least 3, are expander graphs, as was proved in [2]:

Lemma 2.2 (Expander graphs) If p1 = p2 = 0 and the degrees are uniformly bounded,
then for every 0 < δ < 1

2 there exists a λδ0 > 0 such that Gn is a (δ, λδ0)-expander graph
w.h.p.
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A related quantity is the so-called isoperimetric number, which is defined as follows:

Definition 2.3 (Isoperimetric number) For a graph Gn, the (edge) isoperimetric number
of Gn equals

(2.5) ie(Gn) = min
A⊂[n]

|A|≤n/2

|∂eA|
|A|

,

where |A| denotes the cardinality of the set A.

This definition implies that any graph is a (0, ie(Gn))-expander graph. When all de-
grees are equal to r ≥ 3, such graphs are called r-regular graphs, then good bounds on
the isoperimetric number are known as proved in [4, 1].

Lemma 2.4 (Bounds on isoperimetric number) Let Gn be a random r-regular graph with
r ≥ 3. Then, whp, there exists a constant C > 0 such that

(2.6)
r

2
−
√

log 2
√
r ≤ ie(Gn) ≤ r

2
− C
√
r.

The above shows that these random graphs behave in a significantly different way then,
for example, the lattice Zd. If you look at a box [`]d ⊂ Zd then the boundary of this box
grows like `d−1 and the number of vertices in the box like `d. Hence, by letting ` → ∞,
we get that the isoperimetric number of Zd equals 0.

3 Ising model

The Ising model on a graph Gn is defined as follows. To each vertex i ∈ [n] we assign a
spin σi ∈ {−1,+1} and we denote a configuration by σ = (σi)i∈[n]. We define an energy
function H(σ) : {−1,+1}n 7→ R, as

(3.1) H(σ) = −J
∑

(i,j)∈En

σiσj − h
∑
i∈[n]

σi,

where J > 0 is the interaction constant and h ∈ R is the external magnetic field. H(σ) is
called the Hamiltonian.

The probability that in equilibrium the system has configuration σ is then given by
Boltzmann-Gibbs measure which is defined as

(3.2) µn(σ) =
1

Zn
e−βH(σ),

where β = 1/T ≥ 0 is the inverse temperature and Zn is the normalization factor, called
the partition function, i.e.,

(3.3) Zn =
∑

σ∈{−1,+1}n
e−βH(σ).
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Without loss of generality, we assume that J = 1, since this is just a rescaling of β and h.
From this it becomes clear that spins in the graph that are neighbors of each other

indeed tend to align, because if these spins have the same sign then the energy is lower,
and hence the probability that this happens is higher.

For a set A ⊆ [n], denote by σA the configuration where

(3.4) σAi =

{
+1, if i ∈ A,
−1, if i /∈ A.

We also denote� = σ∅ and� = σ[n], the all minus and all plus configurations, respectively.
We often identify the vertex and its spin, e.g., we say that vertex i has a + neighbor if
there is a vertex j such that (i, j) ∈ En with σj = +1.

Many results about the equilibrium solution for the Ising model on random graphs
have been obtained, see, for example, [5, 7, 8].

4 Dynamics of the Ising model and metastability

Besides looking at the Ising model at equilibrium, we can also look at this model when
the spins evolve in time. We let the system evolve according to Glauber dynamics with
Metropolis rates. That is, we consider a discrete time Markov chain where at every time
step we select one of the n spins uniformly at random. If flipping this spin (changing it
from − to + or from + to −) results in a configuration with lower energy, this spin is
always flipped. If the energy is going up by flipping this spin, the spin is flipped with
probability e−β∆H , where ∆H is the energy difference. If β is large this means that this
is very unlikely to happen (but not impossible).

More formally, we can write the transition probabilities c(σA, σB) from configuration
σA to σB as

(4.1) c(σA, σB) =


1
ne
−β[H(σB)−H(σA)]+ , if |A4B| = 1;

1−
∑

B:|A4B|=1
1
ne
−β[H(σB)−H(σA)]+ , if A = B,

0, otherwise,

where A4B is the symmetric difference between sets A and B, and [a]+ = max{a, 0}. We
denote by Pη the law of the process starting from configuration η.

The time at which the process visits the configuration σ for the first time if the process
starts from η is called the hitting time of σ and is denoted by τσ. When studying metasta-
bility, the problem is to find the hitting time of the stable configuration if the system
starts in a metastable configuration. We now define what it means for a configuration to
be (meta)stable.

The stable state is the state for which the Hamiltonian is minimal. Throughout the
rest of this note we assume that h > 0, so that it is obvious from (3.1) that the stable
state is �.

To define metastable states, we need to define the communication height between two
configurations σ and σ′ which is given by

(4.2) Φ(σ, σ′) = min
ω path from σ to σ′

max
σ′′∈ω

H(σ′′),
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where we say that a sequence of configurations ω is a path from σ to σ′ if ω = (σ =
σA0 , σA1 , . . . , σA` = σ′) for some ` ≥ 1 and |Ak4Ak+1| = 1 for all 0 ≤ k < `. We then
define the stability level of a configuration σ as

(4.3) Vσ = min
σ′:H(σ′)<H(σ)

Φ(σ, σ′)−H(σ).

Note that V� = ∞ since there are no configurations with smaller energy. The maximal
stability level is defined as

(4.4) Γ = max
σ 6=�

Vσ,

and the metastable states are those configurations η such that Vη = Γ. In general, the
metastable state in the Ising model is �. (This has to be proved, but we assume this is
true in this note.) This is depicted schematically in the following picture:

H(σ)

Γ

The maximal stability level Γ is an important quantity because of the following result
from [11]:

Theorem 4.1 (Metastable time) For all ε > 0,

(4.5) lim
β→∞

P�[eβ(Γ−ε) < τ� < eβ(Γ+ε)] = 1.

This theorem says that the time it takes for the system to go from the metastable
configuration � to the stable configuration � is proportional to eβ Γ when β →∞. Hence,
if we are interested in the metastable time in the limit β → ∞ (the zero temperature
limit), it suffices to study the energy function H(σ) to compute Γ.
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4.1 Lower bound on the metastable time

We now present an example of the type of computations that need to be done to combine
the above results to get bounds on the metastable time for the Ising model on random
graphs.

To be specific, we derive a lower bound on the communication height between � and
� for expander graphs.

Lemma 4.2 (Lower bound on communication height) Let Gn be a (δ, λ)-expander graph
for some 0 ≤ δ < 1

2 and λ > 0 and suppose that 0 < h < λ. Then,

(4.6) Φ(�,�)−H(�) ≥ (λ− h)n.

Proof. For any subset A ⊆ [n] with |A| ≤ n/2, it holds that

H(σA) = −
∑

(i,j)∈En

σAi σ
A
j − h

∑
i∈[n]

σAi = −(|En| − |∂eA|) + |∂eA| − h|A|+ h(n− |A|)

= 2|∂eA| − 2h|A| − |En|+ hn.(4.7)

Note that every path from � to � has to go through a configuration with bn/2c plus spins,
because only one spin at a time can change. By the definition of expander graphs, for any
such configuration A,

(4.8) H(σA) = 2|∂eA| − 2h|A| − |En|+ hn ≥ 2(λ− h)
n

2
− |En|+ hn.

The statement of the lemma now follows by observing that

(4.9) H(�) = −|En|+ hn.

Note that this lemma holds for general graphs, but that only gives useful information if λ
stays strictly positive in the limit n→∞. As we mentioned this is not the case for Zd, for
example, but it is true for the configuration model. Hence, combining the above lemma
with Theorem 4.1 we get the following lower bound on the metastable time.

Corollary 4.3 (Lower bound on the metastable time) Let Gn be a (δ, λ)-expander graph
for some 0 ≤ δ < 1

2 and λ > 0 and suppose that 0 < h < λ. Then,

(4.10) lim
β→∞

P�[τ� > eβ((λ−h)n−ε)] = 1.

Proof. If it is indeed true that � is the metastable state, then

(4.11) V� = Φ(�,�)−H(�).

From the definition of Γ and Lemma 4.2 it then follows that

(4.12) Γ ≥ Φ(�,�)−H(�) ≥ (λ− h)n.

The corollary now follows from Theorem 4.1.
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5 Concluding remarks

Above we gave a lower bound on the metastable time for the Ising model on random
graphs chosen according to the configuration model. For r-regular graphs, Lemma 2.4 can
be used to get a better lower bound. This lemma, or rather more precise results from [1],
can also be used to get an upper bound on the metastable time. This gives the following
theorem, which is the main result of [6].

Theorem 5.1 (Metastable time for random r-regular graphs) Let Gn be a random r-
regular graph with r ≥ 3 and suppose that 0 < h < C0

√
r for some uniform constant

C0 > 0 small enough. Then, there exist uniform constants 0 < C1 <
√

3/2 and C2 < ∞
so that, whp,

(5.1) lim
β→∞

P�[eβ(r/2−C1
√
r)n < τ� < eβ(r/2+C2

√
r)n] = 1.

This gives bounds on the metastable time, but there is still a gap between the constants
−C1 and C2. An interesting open problem is to identify the exact constant, or even to
prove that such a constant exists.

It would also be interesting to generalize this results to general degree sequences. Above
we showed how to obtain a lower bound also in this case, but how to obtain a matching
upper bound is not known.

The above results only say something about the zero temperature limit β → ∞. It
would also be interesting to study the behavior of this model at low positive temperatures
(large but finite β). This in general is a much more difficult problem, because not only
the energy function H(σ) is of importance, but also entropy effects have to be taken into
account.
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Automorphism-invariant modules

Nguyen Khanh Tung (∗)

Abstract. In this note we mention the class of injective modules, the class of quasi-injective modules
and their generalization, the class of automorphism-invariant modules. Then we give some results
related to the endomorphism rings of automophism-invariant modules and their injective envelopes
and show a connection between automorphism-invariant modules and bolean rings.

1 Introduction

The important of injective modules in Module Theory and more generally in Algebra be-
came obvious in the 1960s and 1970s largely through the lecture note of Carl Faith [10].
Since that time there has been a continuing interest in such modules and their various
generalization which arose directly from the study of injective modules. Many results
obatined for injective modules could be transfered readily to quasi-injective modules. One
of generalizations of the class of quasi-injective modules is the class of automorphism-
invariant modules. A module M is called automorphism-invariant if it is invariant under
automorphisms of its injective envelope, that is, if ϕ(M) ⊆ M for every ϕ ∈ Aut(E(M))
(equivalently, if ϕ(M) = M for every ϕ ∈ Aut(E(M))). It is showed that every di-
rect summand of automorphism-invariant modules is automorphism-invariant and the
class of automorphism-invariant modules satisfies Condition (C2) and (C3). However, an
automorphism-invariant module satisfy Condition (C1) if and only if it is quasi-injective.
Moreover, we will see that if M is an automorphism-invariant module, then

End(M)/J(End(M))

turns out to be a rationally closed subring of

End(E(M))/J(End(E(M))).

Both the rings End(M)/J(End(M)) and End(E(M))/J(End(E(M))) are von Neumann
regular [12, Proposition 1]. We consider in particular the case of automorphism-invariant
modules of finite Goldie dimension or indecomposable. Notice that automorphism-invariant
modules have the exchange property [12], so that indecomposable automorphism-invariant

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on February 25th, 2015.
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modules have a local endomorphism ring. Furthermore, idempotents can be lifted modulo
every right ideal both in End(M) and in End(E(M)) [17]. We then study the connec-
tion between automorphism-invariant modules and boolean rings. The existence of such a
connection is from the results in Section 5 of [20], where Vámos considers modules whose
endomorphism ring (or endomorphism ring modulo the Jacobson radical) is a boolean ring.
He studies modules in which the identity endomorphism is the sum of two automorphisms.
This condition is related to the existence of factors of the endomorphism ring isomorphic to
the field F2 with two elements [13]. Notice that if M is an automorphism-invariant right
R-module and End(M) has no factor isomorphic to F2, then M is quasi-injective [11,
Theorem 3]. Every automorphism-invariant module is the direct sum of a quasi-injective
module and a square-free module [7, Theorem 3]. This leads us to study, for automorphism-
invariant square-free modules M , the relation between M being quasi-injective and the
existence of factors isomorphic to F2 in End(M) and in End(E(M)).

Throughout, all rings have identity element and modules are right unital. For a module
M , E(M) denotes the injective envelope of M .

2 Injective and Quasi-Injective Modules

In this section, we introduduce injective and quasi-injective modules as well as their basic
properties that will be necessary to study automorphism-invariant modules. All results
are well-known and can be found in most text-book of ring theory or module theory. We
refer the reader to [1] and [14].

Definition 2.1 Let ER,MR be two modules. We say that ER is injective relative to
MR (or ER is M -injective) if, for each monomorphism f : KR →MR and each morphism
g : KR → ER, there exists a morphism h : MR → ER with h ◦ f = g.

Definition 2.2 A module E is injective if E is injective relative to every module, that
is, for every monomorphism f : K → M and every morphism g : K → E, there exists
a morphism h : M → E such that g = h ◦ f. A ring R is right selft-injective if RR is
injective.

In the next Proposition, we give a further criterion to determine injective modules,
that is, a further characterization of injective modules.

Proposition 2.3 (Baer’s criterion) The following about a module E are equivalent:

(a) E is injective.

(b) E is injective relative to R.

(c) For every right ideal I ≤ RR and every morphism h : I → E there exists an x ∈ E
such that h(a) = xa (a ∈ I).

Example 2.4 An abelian group G is divisible if nG = G for every non zero integer n.
Hence G is divisible if and only if, for every g ∈ G and every n > 0, there exists h ∈ G

Università di Padova – Dipartimento di Matematica 57



Seminario Dottorato 2014/15

such that g = nh. A Z-module G is injective if and only if it is a divisible abelian group.
For instance, the abelian group Z is not divisible, and the abelian group Q is divisible.
Hence, Q is injective.

Definition 2.5 An injective envelope of a module MR is a pair (ER, i) where ER is an
injective right R-module and i : MR → ER is an essential monomorphism.

Theorem 2.6 Every right R-module has a unique injective envelope up to isomorphism.

Definition 2.7 A module MR is called quasi-injective if M is M -injective.

Theorem 2.8 (R. E. Johnson and E. T. Wong, 1961) Let M be a module. Then M is
quasi-injective if and only if it is invariant under every endomorphism of E(M).

Example 2.9 Let R = Z/4Z and M = 2Z/4Z. Then M is quasi-injective but not
injective.

3 Automorphism-Invariant Modules

The aim of this section is to give a presentation of some known and new results on
automorphism-invariant modules and related notions.

Definition 3.1 A module M is called automorphism-invariant if it is invariant under
automorphisms of its injective envelope, that is, if ϕ(M) ⊆ M for every ϕ ∈ Aut(E(M))
(equivalently, if ϕ(M) = M for every ϕ ∈ Aut(E(M))).

It is showed that a module M is quasi-injective if and only if it is invariant un-
der endomorphisms of its injective envelopes (Theorem 2.8). So every quasi-injective
is automorphism-invariant. But the converse is not true by the following example.

Example 3.2 Let R consists of all (xn)n∈N ∈
∏
n∈N Z2 such that all except finitely many

xn are equal to some a ∈ Z2. Then R is a ring, and E(RR) =
∏
n∈N Z2. Because End(SR)

has only one automorphism, namely the identity, R is automorphism-invariant but it is
not quasi-injective.

Definition 3.3 A module M satisfies Condition (C1) if every submodule of M is essential
in a direct summand of M .

Definition 3.4 A module M satisfies Condition (C2) if every submodule of M isomorphic
to a direct summand of M is also a direct summand of M .

Definition 3.5 A module M satisfies Condition (C3) if, for any two direct summands
N1, N2 of M with N1 ∩N2 = 0, the direct sum N1 ⊕N2 is a direct summand of M .
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It is well known that every injective (quasi-injective) module satisfies Condition (Ci) (i =
1, 2, 3) (see [14] or [16]). The following results show that automorphism-invariant modules
always satisfy Condition (C2) and (C3), but do not satisfy Condition (C1) in general.

Proposition 3.6 (T.-K. Lee and Y. Zhou, 2013) An automorphism-invariant module
satisfies Condition (C1) if and only if it is quasi-injective.

Proposition 3.7 (T.-K. Lee and Y. Zhou, 2013) Every automorphism-invariant module
satisfies Condition (C3).

Definition 3.8 A module M is called pseudo-injective if, for any submodule A of M,
every monomorphism f : A→M can be extended to an element of End(M).

Theorem 3.9 (N. Er, S. Singh and A. K. Srivastava, 2013) Automorphism-invariant mod-
ules are precisely pseudo-injective modules.

Proposition 3.10 (H. Q. Dinh, 2005) Every pseudo-injective satisfies Condition (C2).

Corollary 3.11 Every automorphism-invariant satisfies Condition (C2).

As the cases of injective and quasi-injective modules, a direct summand of an auto-
morphism-invariant module inherits the property by the next proposition.

Proposition 3.12 (T.-K. Lee and Y. Zhou, 2013) Every direct summand of an automor-
phism-invariant is automorphism-invariant.

Before stating some results about the endomorphism rings of automorphism-invariant
modules, we review some necessary concepts.

Definition 3.13 A ring morphism ϕ : R → S is local if, for every r ∈ R, ϕ(r) invertible
in S implies r invertible in R.

Proposition 3.14 A ring morphism ϕ : R→ S is local if and only if Kerϕ ≤ J(R) and
ϕ(U(R)) = ϕ(R)∩U(S) where U(R) and U(S) is the group of invertible elements of rings
R,S respectively.

Definition 3.15 A rationally closed subring of a ring S is a subring R of S such that
the embedding R → S is a local morphism, that is, a subring R of S such that U(R) =
R ∩ U(S).

Let M be a right R-module. From now we denote E(M) the injective envelope of M.
Let ∆ be denote the set of all endomorphisms with essential kernel. The next proposition
characterizes the Jacobson radical of the endomorphism rings of automorphism-invariant
modules.
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Proposition 3.16 (P. A. Guil Asensio and A. K. Srivastava, 2013) Let M be an automorphism-
invariant module. Then the Jacobson radical of End(M) is ∆, End(M)/J(End(M)) is a
von Neumann regular ring and idempotents can be lifted modulo J(End(M)).

More properties about the endomorphism of automorphism-invariant modules are pro-
vided by the following results.

Theorem 3.17 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) Let M be an
automorphism-invariant module and E(M) be its injective envelope. Then

(a) There is a canonical local morphism

ϕ : End(M)→ End(E(M))/J(End(E(M)))

with kernel J(End(M)), so that ϕ induces an embedding ϕ, as a rationally closed sub-
ring, of the von Neumann regular ring End(M)/J(End(M)) into the von Neumann
regular right self-injective ring

End(E(M))/J(End(E(M))).

(b) For every invertible element v of the ring End(E(M))/J(End(E(M))), there exists
an invertible element u of End(M)/J(End(M)) such that ϕ(u) = v.

(c) For every idempotent element f of the ring End(E(M))/J(End(E(M))) there exists
an idempotent element e of End(M)/J(End(M)) such that ϕ(e) = f if and only if
the module M is quasi-injective.

(d) If M is quasi-injective, then ϕ is an isomorphism.

Proposition 3.18 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) Let M be an
automorphism-invariant module. Then

(a) If M is indecomposable, then End(M) is a local ring.

(b) If M has finite Goldie dimension, then every injective endomorphism of M is an
automorphism of M and the endomorphism ring End(M) is a semiperfect ring.

Corollary 3.19 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) If M,N are two
automorphism-invariant R-modules of finite Goldie dimensions isomorphic to submodules
of each other, then M is isomorphic to N .

Proposition 3.20 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) The following
conditions are equivalent for a ring R.

(a) Every automorphism-invariant R-module of finite Goldie dimension is quasi-injective.
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(b) Every automorphism-invariant indecomposable R-module of finite Goldie dimension
is uniform.

(c) Every automorphism-invariant indecomposable R-module of finite Goldie dimension
is quasi-injective.

A non-zero ring R is a boolean ring if every element of R is idempotent. A ring is
boolean if and only if it is isomorphic to a subring of FX2 , where X is a non-empty set. The
next theorem gives us a sufficient condition so that an automorphism-invariant module is
quasi-injective.

Theorem 3.21 (P. A. Guil Asensio and A. K. Srivastava, 2014) Let M be a right module
such that End(M) has no factor isomorphic to F2. Then M is quasi-injective if and only
if M is automorphism-invariant.

Recall that two modules are said to be orthogonal if they do not contain nonzero
isomorphic submodules.

Proposition 3.22 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) Let M = M1⊕M2

be an automorphism-invariant R-module where M1 and M2 are orthogonal. Then End(M)
has no factor isomorphic to F2 if and only if each End(Mi) (i = 1, 2) has no factor
isormophic to F2.

Definition 3.23 A module M is square-free if it does not contain a direct sum of two
non-zero isomorphic submodules.

Theorem 3.24 (N. Er, S. Singh and A. K. Srivastava, 2013) Every automorphism-invariant
module M decomposes as a direct sum M = X ⊕ Y , where X is quasi-injective, Y is a
square-free module orthogonal to X, and X and Y are relatively injective modules.

The previous theorem reduces studying automorphism-invariant modules to consider-
ing automophism-invariant square-free modules.

Lemma 3.24.1 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) If M1,M2 are two
right modules over a ring R and M1,M2 have isomorphic injective envelopes, which are
non-zero modules, then M1 and M2 have non-zero isomorphic submodules.

Corollary 3.25 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) If M is an auto-
morphism-invariant square-free module, then every injective endomorphism of M is an
automorphism of M .

Corollary 3.26 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) If M,N are two
automorphism-invariant square-free R-modules isomorphic to submodules of each other,
then M is isomorphic to N .
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Proposition 3.27 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) Let M be an
automorphism-invariant module and E(M) be its injective envelope. The following condi-
tions are equivalent:

(a) M is square-free.

(b) E(M) is square-free.

(c) The von Neumann regular ring End(M)/J(End(M)) is abelian.

(d) The von Neumann regular right self-injective ring End(E(M))/J(End(E(M))) is
abelian.

Theorem 3.28 (A. Alahmadi and A. Facchini and N. K. Tung, 2015) Let M be an
automorphism-invariant module and let E(M) be its injective envelope.

(a) If M is quasi-injective and End(M) has a factor isomorphic to F2, then End(E(M))
has a factor isomorphic to F2.

(b) If M has finite Goldie dimension and End(M) has a factor isomorphic to F2, then
the following conditions hold.

(i) End(E(M)) has a factor isomorphic to F2.

(ii) E(M) has a direct-sum decomposition E(M) = E⊕C with E orthogonal to C,
E an indecomposable R-module and End(E)/J(End(E)) ∼= F2.

(iii) Aut(E) = 1 + J(End(E)), so that every automorphism of the R-module E is
the identity on an essential R-submodule of E.

(iv) E is the injective envelope of its non-zero R-submodule annE(2).
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Introduction to kernel-based methods

Gabriele Santin (∗)

This note is a brief introduction to the theory of kernel based methods, with particular
focus on approximation in kernel based spaces.

Kernel-based methods are emerging in various fields of applied mathematics as a tech-
nique to solve several kind of problems. Kernel-based algorithm are successfully applied in
approximation theory, in machine learning, in geostatistics and in different type of numer-
ical simulations in engineering. The use of such methods is motivated by reasons that vary
from field to field, but it is mainly due to their flexibility and to the simple structure that
is shared by all the particular algorithms. In particular, in the field of approximation the-
ory, kernel-based methods can be proven to be error optimal both in solving interpolation
problems and recovery of solution of certain PDEs.

In the following we will give an introduction to the use of kernels. The focus will be on
approximation, but the underlying theory is the same used in all the applications. Further
details on the topics presented in this note can be found in the monographs [1, 2, 3].

1 Statement of the problem and motivation

We are interested in the following recovery problem in Rd. We are given a set of n ∈ N
pairwise distinct points Xn = {x1, . . . , xn} ⊂ Ω ⊂ Rd, where Ω is a bounded set, and a
vector of values Fn = [f1, . . . , fn]T ∈ Rn. The vector Fn is understood as a collection of
sampling of an unknown continuous function f : Ω→ R, but for now we consider only the
n values fi.

Given this set of data, we consider a linear scheme to find a continuous function
sn : Ω→ R that interpolates the data, i.e., s(xi) = fi, 1 ≤ i ≤ n. To do so, one considers
a suitable n-dimensional trial space V = span{vi, . . . , vn}, where vj : Ω → R are linearly
independent continuous functions, and an interpolant

sn =

n∑
j=1

cjvj ,

for an unknown coefficient vector c = [c1, . . . , cn]T ⊂ Rn such that sn(xi) = fi, 1 ≤ i ≤ n.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on March 18th, 2015.
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A minimal requirement for a scheme to be well posed is the existence of a unique
function sn ∈ V that interpolates the data, for any given set of data. This is equivalent
to require that V is an Haar space.

Definition 1 An n-dimensional linear space V ⊂ C(Ω) is an Haar space of dimension n
on Ω if for any set Xn of pairwise distinct point in Ω and any set of values Fn ∈ Rn there
exist a unique function sn ∈ V such that sn(xi) = fi, 1 ≤ i ≤ n.

A typical example of an Haar space of dimension n in R is the space of univariate real
polynomials of degree n − 1, that is to say, the (n − 1)-degree polynomial interpolant on
a set of n distinct points is always uniquely defined.

The situation is completely different if d > 1.

Theorem 1 (Mairhuber - Curtis) If Ω ⊂ Rd, d > 1, contains an interior point, there
exists no Haar spaces on Ω of dimension n > 1.

The theorem tells us that for d > 1, except for the trivial case n = 1, one can not
choose a fixed trial space V , but it is necessary to adapt it to each particular set of data.
A strategy to overcome this problem comes from the use of kernels and we will see that,
in some circumstances, it is also the unique optimal strategy.

2 From kernel interpolation to Hilbert spaces

A kernel K on a set S is a positive definite and symmetric function K : S×S → R, where
positive definiteness is defined in the following sense.

Definition 2 A function K : S × S → R is positive definite if, for any n ∈ N, for
any set {x1, . . . , xn} ⊂ S of pairwise distinct elements and for any vector of coefficients
c = [c1, . . . , cn]T ∈ Rn,

n∑
i=1

n∑
j=1

cicjK(xi, xj) ≥ 0.

If the above expression is zero only for c = 0, the function is strictly positive definite.

Although the theory can be developed for positive definite kernels, we will restrict the
following discussion to strictly positive definite kernels, to which we will refer simply as
kernels. Most of the results are true in both cases, but dealing with vanishing bilinear forms
requires more technical details. Moreover, in this note we will only consider continuous
kernels defined on bounded subspaces Ω of Rd, even if kernels can be constructed on
abstract sets S with almost no structure (e.g., kernels defined on sets of strings or on
trees and graphs are commonly used in Machine Learning; also, complex valued kernels
are studied in differential geometry and analysis).

To have a concrete example in mind, we recall that the Gaussian kernel K(x, y) =
e−ε

2‖x−y‖, ε > 0, is in fact a kernel on Rd, for all d.
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2.1 Kernel-based interpolation

Given a kernel, the interpolation problem can be simply solved in the following way. We
can build point-dependent trial spaces through translates of the kernel, i.e.,

V (Xn) = span{K(·, xi) : 1 ≤ i ≤ n},

hence look for interpolants in the form

sn =
n∑
j=1

cjK(·, xj),

for some unknown vector of coefficients c ∈ Rn. The vector c is determined by the
interpolation conditions sn(xi) = fi, 1 ≤ i ≤ n, i.e., by the solution of the linear system

Ac = Fn,

where the kernel matrix A = [K(xi, xj)]
n
i,j=1 ∈ Rn×n is symmetric and positive definite

by the definition of kernel, and it is in particular invertible for any set of pairwise distinct
points. In other words, the interpolation problem is well posed for any data.

We just mention here that the actual computation of the solution of the above linear
system is in general an hard task since the kernel matrix is usually ill-conditioned, and it
should not be solved directly. Nevertheless, several methods are available to compute c in
a stable way, and the topic is currently an active field of research.

2.2 Kernel-based spaces

What we described so far is just a procedure to construct a continuous function with
prescribed values at prescribed points. Now we would like to see if this is an effective
approximation method. Namely, we assume that the data values are samples of a function
f : Ω→ R, i.e., fi = f(xi), 1 ≤ i ≤ n, and we will investigate the relation between f and
sn. In particular, we will characterize the space of functions that can be recovered with
arbitrary accuracy by the above procedure, provided n is sufficiently large.

First, observe that for any x ∈ Ω the functions K(·, x) : Ω→ R and all the finite linear
combination of functions of this kind can be exactly recovered, simply by choosing as Xn

all the points used to construct the kernel translates. We denote as H0(Ω) the set of all
these functions, i.e.,

H0(Ω) = span{K(·, x) : x ∈ Ω}.

On H0(Ω) is possible to define the bilinear form n∑
j=1

cjK(·, xj),
m∑
i=1

diK(·, yi)


K

:=
n∑
j=1

m∑
i=1

cjdiK(xj , yi).

and since K is a kernel, and it is in particular symmetric and strictly positive definite,
this bilinear form defines an inner product on H0(Ω).
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The closure of H0(Ω) with respect to the norm induced by (·, ·)K is an Hilbert space
HK(Ω) of functions on Ω to R, and it is called the native space of the kernel K on Ω. We
will still denote by (·, ·)K its inner product.

The native space of K is in fact the natural space where kernel approximation takes
place, and in enjoys some useful property that are listed in the following theorem.

Theorem 2 The space HK(Ω) is a reproducing kernel Hilbert space (RKHS) with kernel
K, i.e.,

(a) K(·, y) ∈ HK(Ω) for all y ∈ Ω,

(b) (f,K(·, x))K = f(x) for all f ∈ HK(Ω), x ∈ Ω,

and it is the unique RKHS with kernel K on Ω. Moreover,

(c) If f ∈ HK(Ω) then ‖f − sn‖K → 0 as n→∞,

(d) if there exists a positive constant Cf such that ‖sn‖K ≤ Cf for any finite set Xn ⊂ Ω,
for any n ∈ N, then f ∈ HK(Ω) and ‖f‖K is the minimal possible value for the
constant Cf .

We now know how to solve the interpolation problem, how to build an Hilbert space
of functions starting from a kernel, and that this space contains precisely (in the sense of
properties (c), (d)) all the functions that can be approximated by the kernel method.

A question that naturally arises is if this is the only way to solve the interpolation
problem. We will see in the next Section that one can in fact go the other way round, i.e.,
start with a quite general Hilbert space and prove that kernel interpolation is the optimal
recovery strategy in that space.

Before moving to the next Section, observe that working in a RKHS is very useful to
construct numerical approximation schemes. First, to compute norms of functions in the
dense subspace H0(Ω) it is enough to evaluate the kernel at some points. Second, thanks
to property (b) of Theorem 2, norm convergence in HK(Ω) implies pointwise convergence.
Indeed, if f, g ∈ HK(Ω),

|(f − g)(x)| = |(f − g,K(·, x)K | ≤ ‖f − g‖K‖K(·, x)‖K
≤ ‖f − g‖K

√
K(x, x) for all x ∈ Ω.

3 From Hilbert spaces to kernel interpolation

We now assume to have an Hilbert space H of functions from Ω to R, and we want to
interpolate a given function in H at prescribed, but arbitrary, points Xn ⊂ Ω. Given this
task, since we want to recover a function from its pointwise samples, it make sense to
assume that the pointwise evaluation functionals δx are continuous in H. We are then in
the following situation.

Theorem 3 A Hilbert space H of functions from Ω to R is a reproducing kernel Hilbert
space if and only if the pointwise evaluation functionals δx are continuous for any x ∈ Ω.

Università di Padova – Dipartimento di Matematica 67



Seminario Dottorato 2014/15

In this case, the kernel of the space is the Riesz representer of these functional, that is to
say,

δx(f) = (f,K(·, x))H for all f ∈ H, x ∈ Ω.

Moreover, the kernel is strictly positive definite if and only if all the functionals {δx : x ∈
Ω} are linearly independent.

As the Theorem proves, kernel-based spaces are quite common. Examples of such
spaces are the following:

• any Hilbert space of finite dimension N is a RKHS. If {vj}Nj=1 is any orthonormal

basis of this space, the kernel is K(x, y) =
∑N

j=1 vj(x)vj(y), x, y ∈ Ω;

• the Sobolev space H1
0 ((0, 1)) is a RKHS. Its kernel is the Brownian bridge kernel

K(x, y) = min(x, y)− xy, x, y ∈ (0, 1);

• the Sobolev spaces Hβ(Rd), β > d/2 are RKHS, whose kernels are the β-Matérn
kernels, which can be expressed in terms of Bessel’s functions.

Under the assumption of continuity of the functionals δx, we are left to work in the
native space of a given kernel K. We will hence still use the notation HK(Ω) for this space
and (·, ·)K for its inner product.

3.1 Optimal recovery

Going back to the interpolation problem, it is clear that the method described in the
previous sections is well defined here. In particular, the trial space V (Xn) is a finite
dimensional subspace of HK(Ω), and we can define an interpolation operator

Sn : HK(Ω)→ V (Xn)

f 7→ sn.

where the interpolating function sn is defined as above. The next Theorem shows that
this is in fact the unique optimal interpolation strategy in HK(Ω).

Theorem 4 The kernel interpolant sn is the minimal norm interpolant in HK(Ω), i.e.,

sn = min{‖tn‖K : tn ∈ HK(Ω), tn(xi) = f(xi), 1 ≤ i ≤ n}.

Moreover, the interpolation operator Sn coincides with the HK(Ω)-projection into the sub-
space V (Xn), thus, in particular, the interpolant is also the ‖ · ‖K-best approximant of
f .

3.2 The power function and a simple error estimate

To conclude this note, we recall the basic error estimate on kernel approximation.
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Namely, although we introduced this method in order to being able to deal with scat-
tered data, there is obviously a dependence of the approximation error upon the distribu-
tion of the points in Xn. To measure this distribution it is customary to introduce the fill
distance hXn,Ω,

hXn,Ω = sup
x∈Ω

min
xi∈Xn

‖x− xi‖,

which corresponds to the radius of the biggest ball that can be put in Ω without points
of Xn.

The error estimate is computed by bounding the power function Pn, that is the norm of
the pointwise approximation error. Namely, since the interpolation operator is a bounded
operator in HK(Ω), we can compute the norm of the functional Ex := δx ◦ (id− Sn),

Ex : HK(Ω)→ HK(Ω)

f 7→ f(x)− sn(x).

The norm of this functional is the power function, and it can be computed as

P2
n(x) = K(x, x)−

n∑
j=1

vj(x)2, x ∈ Ω,

where {vj}nj=1 is any orthonormal basis of V (Xn). Of course, for any f ∈ HK(Ω), it holds

|f(x)− sn(x)| ≤ Pn(x)‖f‖K , x ∈ Ω.

The next Theorem uses this relation and a bound on the power function to have a bound
on the pointwise approximation error.

Theorem 5 If Ω is bounded and satisfies an interior cone condition, and K ∈ C2k(Ω×Ω),
there exists positive constants h0 and C such that, for all Xn with hXn,Ω ≤ h0,

|f(x)− sn(x)| ≤ ChkXn,Ω‖f‖K , x ∈ Ω.
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A short introduction to Berkovich

affine line over the field Cp

Velibor Bojković (∗)

Abstract. In this note we present a construction of the Berkovich affine line over the field Cp,
which is a p-adic analogue of the complex plane C. We emphasize on how one can visualize its
tree-structure as well as explain what are its building blocks: both as a set and as a topological
space. We end by describing a connection between general Berkovich compact, connected, smooth
curves over Cp and (the reduction of) their semistable models over Fp.

1 Introduction: from Q to Cp

1.1 p-adic norm on Q

Let us start by recalling the definition of a norm on Q.

Definition 1.1 A norm on Q is a mapping | · | : Q → R≥0, x 7→ |x| which satisfies the
following three conditions:

(a) |x| = 0 iff x = 0,

(b) |xy| = |x||y|,

(c) |x+ y| ≤ |x|+ |y| for all x, y ∈ Q .

Example 1.2

(a) We all know the standard absolute value | · |∞ on Q (| − 2|∞ = 2, |95 |∞ = 9
5 ).

(b) Let c ∈ (0, 1), then |x|∞,c := |x|c∞ is also a norm on Q.

(c) The trivial absolute value | · |0 (|0| = 0 |x| = 1, x 6= 0).
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Università di Padova – Dipartimento di Matematica 70



Seminario Dottorato 2014/15

Exercise 1.3 Prove that | · |∞,c is really a norm on Q.

The main example of a norm on Q in this note is the so-called p-adic norm, where p
is a prime number.

Definition 1.4 Let p ∈ Π, where Π is the set of prime numbers, and let x ∈ Q. Let
us write x = a

b = pα a
′

b′ where (p, a′) = (p, b′) = 1, and α ∈ Z. We define a function
| · |p : Q→ R≥0 as x 7→ |x|p = p−α.

Theorem 1.5 The map | · |p is a norm on Q.

Exercise 1.6 Prove the following:

(a) | · |p is a norm on Q;

(b) For c ∈ (0, 1), | · |p,c := | · |cp is also a norm;

(c) p-adic norm is ultrametric, i.e. it satisfies the strong triangle inequality |x + y|p ≤
max(|x|p, |y|p).

One may notice that the norms | · |p and | · |)p,c are more ”similar” than, for example,
the norms | · |p and | · |∞, the similarity at this point being understood intuitively. For
example, the sequence (pn)n converges in each of the norms | · |p,c but it doesn’t converge
in none of the norms | · |∞,c, To make things formal, we recall the following.

Definition 1.7 We say that two norms | · |1 and | · |2 are equivalent if |x|1 < 1 iff |x|2 < 1.

The following celebrated theorem due to Ostrowski classifies all the norms on Q up to
equivalence.

Theorem 1.8 (Ostrowski’s Theorem) Every norm on Q is either | · |0, or it is equivalent
to | · |∞ or to | · |p for some p ∈ Π.

1.2 The field Cp

From the first course on mathematical analysis one knows that the fields R and C are
obtained from Q by first completing with respect to the standard absolute value | · |∞ (this
gives R) and then taking the algebraic closure of R (to obtain C). Then, one proves as
well that C is complete.

What happens if we do the same procedure for Q (i.e. completing and then taking
the algebraic closure) with respect to the p-adic norm | · |p?

Definition 1.9 We define Qp to be completion of Qp with respect to the p-adic norm
| · |p, and call it the p-adic field.

One may think about field Qp as of an analogue of the field R. However, when one
takes the algebraic closure of Qp, the obtained field Qp doesn’t really represent an analogue
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of the field C, as the following exercise suggests. Notice that | · |p canonically extends to
Qp, and we call the extension as well the p-adic norm and use | · |p to denote it.

Exercise 1.10 Prove that the algebraic closure Qp of Qp is not complete.

Definition 1.11 The p-adic completion of the field Qp is denoted by Cp.

It turns out that the field Cp is algebraically closed and complete, and as such one may
think of it as the p-adic analogue of the field of complex numbers C. But, it seems that
all the analogy stops here, as the following short list of properties suggests, and which is
left as an exercise.

Exercise 1.12

(a) Prove that the field Cp equiped with the topology induced by the norm | · |p is totally
disconnected. (Recall that the topological space is said to be totally disconnected if
the maximal connected subsets are just points.)

(b) Let B(a, r), where a ∈ Cp and r ∈ R>0 be the closed disc in Cp with center in a and
of radius r, i.e. the set of points {b ∈ Cp, |a − b|p ≤ r}. Prove that every point in
B(a, r) is a center of it.

(c) Let a, b, c ∈ Cp. Prove that the ”triangle” with vertices in a, b, c is isoscele.

(d) Prove that the rim {z ∈ Cp, |z| = 1} is both open and closed in p-adic topology.

(e) Let B(0, r) ⊂ Cp as above. Can you give an example of a continuous, locally constant
function f : B(0, 1) → R which is not constant? Can this happen if we take the
disc B(0, r) ⊂ C? Why not?

And now, to the motivational question of this note: How one can do analytic geometry
over a field such as Cp? What would for example be an equivalent over Cp of the classical
complex plane/affine line over C?

In the next sections we present a short introduction to the Berkovich theory of analytic
spaces over normed fields, which answers in a satisfactory way the previous questions.

2 Berkovich affine line A1
Cp

2.1 Berkovich spectrum of a normed ring

Definition 2.1 A normed commutative ring A is a commutative ring A equipped with a
function | · | : A→ R≥0 which satisfies the following conditions:

(a) |1| = 1 and |f | = 0 iff f = 0,

(b) |f · g| ≤ |f | · |g|,

Università di Padova – Dipartimento di Matematica 72



Seminario Dottorato 2014/15

(c) |f + g| ≤ |f |+ |g|,

Definition 2.2 Let A be a commutative ring (assumed to be with unit). A multiplicative
seminorm on A is a function | · | : A→ R≥0 such that

(a) |0| = 0 and |1| = 1,

(b) |f · g| = |f ||g|,

(c) |f + g| ≤ |f |+ |g|.

Definition 2.3 Let A be a normed ring, with norm || · ||. The Berkovich spectrum of the
ring A is the setM(A) of all the multiplicative seminorms | · | on A which are bounded by
the norm || · ||. We say that | · | is bounded by || · || if there exists a positive real constant
C such that for all f ∈ A, |f | < C||f ||. We equip the setM(A) with the weakest topology
such that the functions, f :M(A)→ R≥0, where f ∈ A and given by |·| ∈ M 7→ |f | ∈ R≥0

are continuous.

We have the following fundamental theorem by Berkovich (see [1]).

Theorem 2.4 Let A be a commutative ring. Then,

(a) If A is nonzero, M(A) is nonempty.

(b) If A is complete, M(A) is compact.

Exercise 2.5 Let A be the ring Z equipped with the standard norm | · |∞. Then Z is a
complete ring. Find M(Z). What is M(Z) if we equip Z with the trivial norm?

Remark 2.6 The general idea for doing analytic geometry over the field Cp, which
would be analogous to the complex analytic geometry over C, is to start with Cp-rings of
functions (in the theory so-called Cp-affinoid algebras) that would correspond to classical
complex holomorphic functions, and then to assign Berkovich spectrum to such rings (of
course, Cp-affinoid algebras come already with a norm, so there is no problem here).

2.2 The set A1
Cp

Definition 2.7 The Berkovich affine line over Cp, A1
Cp , is defined to be the set of multi-

plicative seminorms on the polynomial ring Cp[T ] extending the p-adic norm of Cp. The
topology of A1

Cp is the weakest one such that all the functions f(T ) ∈ Cp[T ] which act on

A1
Cp by | · | 7→ |f(T )| ∈ R≥0 are continuous.

Remark 2.8 Note a slight difference with respect to taking the Berkovich spectrum of
the polynomial ring. First of all, we didn’t assume any norm on Cp[T ] so we couldn’t just
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take M(Cp). However, it can be proved that A1
k is a union of the Berkovich spectra of

Cp-affinoid algebras corresponding to the closed discs in A1
Cp (see the section on topology).

Remark 2.9 If we do the same procedure for the ring of polynomials C[T ] we will obtain
the complex plain/affine line over C! ( Recall Gelfand-Mazur theorem. ) This gives a nice
similarity between p-adic and complex worlds.

Let us describe some of the points in A1
Cp i.e. some of the multiplicative seminorms

on Cp[T ] which extend the p-adic norm on Cp. As the reader may have already noted,
we have a dual point of view on the elements of the set A1

Cp , namely as on points and as
on the multiplicative seminorms. To clarify in which mode we are, and to simplify the
notions, we agree that for a point in x ∈ A1

Cp to denote the corresponding seminorm as

| · |x.

Example 2.10 Let, as before, B(a, r) := {b ∈ Cp, |b − a|p ≤ r}, where a ∈ Cp, r ≥ 0
(note that for r = 0, B(a, r) is just the point a). Then, the map | · |B(a,r) acting on Cp[T ]
as |f |B(a,r) := supb∈B(a,r) |f(b)| is in A1

Cp . The point corresponding to the disc B(0, 1) is
called the Gauss point and is usually denoted by ζG.

Example 2.11 More generally, if Bn := B(an, rn), n ∈ N is a nested sequence of closed
discs in Cp ,i.e. Bn are closed discs in Cp and for each n ∈ N, Bn+1 ⊆ Bn, then the map
| · |(Bn)n : Cp[T ] → R≥ given by |f |(Bn)n := limn |f |Bn for f ∈ Cp[T ] is a multiplicative
seminorm on Cp[T ] whose restriction to Cp is p-adic norm, and as such is in A1

Cp .

Exercise 2.12 Prove the statements in the Examples 2.10 and 2.11.

It turns out that not many more examples can be made, as the following celebrated
theorem of Berkovich tells us.

Theorem 2.13 (Berkovich classification theorem) Every point/seminorm x ∼ | · |x ∈ A1
Cp

is of the form |f |x = limn |f |Bn

Proof. See [1].

2.3 Classification of points revisited

Even though we have classified all the points of A1
Cp in the Theorem 2.13 we can further

refine the classification by saying something more about the nature of the nested sequences
Bn that appear in the classification. The right thing to look at is the intersection ∩nBn.

Let | · |x ∈ A1
Cp be a point given by the nested sequence (Bn)n of closed discs in Cp.

Then, we have the following possibilities for the intersection ∩nBn:

(a) ∩nBn = a ∈ Cp. In this case the seminorm is given by |f |(Bn) = |f(a)| and we agree
to call | · |x a type I or a rational point in A1

k.
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(b) ∩nBn = B(a, r) and r ∈ pQ = |C∗p|, where the later is the set {|α|, 0 6= α ∈ Cp}.
In this case the seminorm is given by |f(T )|x = sup |f(T )|B(a,r) or equivalently, by
writing f(T ) = f0 +f1(T −a)+ · · ·+fn(T −a)n, we have |f(T )| = maxi |fi|ri; These
are called points of type II.

(c) ∩nBn = B(a, r) and r /∈ pQ = |C∗p|. These are called points of type III.

(d) ∩nBn = ∅; These are called points of type IV.

Remark 2.14 Contrary to the case of R or C, it can happen that a sequence of nested
closed discs in Cp has an empty intersection. This is due to the fact that Cp is not
spherically complete and this is precisely the origin of the points of type IV.

2.4 Hierarchy

Before going to the topological description of A1
k we use the fact that the values of poly-

nomials in Cp[T ] at different points in A1
Cp can be compared, and this can be used to put

a partial ordering on the points in A1
Cp .

Let us write ζa,r for the point corresponding to the disc B(a, r) (here, a and r can also
be sequences of numbers corresponding to a type IV point).

Definition 2.15 For two points ζa1,r1 , ζa2,r3 ∈ A1
Cp ,we write ζa1,r1 ≥ ζa2,r2 if for all

f(T ) ∈ Cp[T ], |f(T )|ζa1,r1 ≥ |f(T )|ζa2,r2 .

Exercise 2.16 Prove that ζa1,r1 ≥ ζa2,r2 iff B(a2, r2) ⊆ B(a1, r1). Prove that in this case,
B(a1, r1) = B(a2, r1), that is ζa1,r1 = ζa2,r1 .

Exercise 2.17 Prove that the minimal points in A1
Cp are type I and type IV points.

One can reformulate the statements of the previous exercises, by saying that we have
the ”real semilines” inside A1

Cp given by parametrization r ∈ [0,∞)↔ ζa,r, for an a ∈ Cp.
Furthermore, two such ”lines” ζa1,r and ζa2,r, r a parameter in [0,∞) intersect precisely
in the point ζa1,|a1−a2|.

In the Figure 1. one may see the Berkovich affine line A1
Cp . The ”full” dots correspond

to the rational points, the ”empty” dots correspond to the type IV points (one can see
that they are endpoints of an ”infinite tree”), the points where the branching occurs are
type II and finally the remaining points are type III. In the figure one may also notice the
Gauss point ζG and the point ”∞” which is an added point which by definition is bigger
than any other point in A1

Cp . (It can also be seen as a one-point compactification of A1
Cp .)

2.5 Topology

The basis of topology on A1
Cp is given by the open and closed disc, which we define next.
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Figure 1. Compactification of the) Berkovich affine line A1
Cp

.

Definition 2.18 A Berkovich closed (resp. open) disc with center in a ∈ Cp and of radius
r ≥ 0 is a set

B(a, r) := {ζb,s, s.t. b ∈ B(a, r) and s ≤ r}

(resp. )
B(a, r−) := {ζb,s, s.t. b ∈ B(a, r) and s < r}.

In the Figures 2 and 3, adopting the representation of A1
Cp as in Figure 1, we show the

Berkovich closed and open unit discs centered at 0 ∈ Cp.

Figure 2. Closed Berkovich disc B(0, 1). Figure 3. Open Berkovich disc B(0, 1−); The da-

shed points correspond to the branches that are

taken out from the closed unit disc.

Notice that the difference between the closed and open Berkovich unit discs centered at

Università di Padova – Dipartimento di Matematica 76



Seminario Dottorato 2014/15

zero is that we removed from the closed disc all the branches which are attached to the
Gauss point, except for branch which contains 0.

We may also present an open annulus which is a set difference between a closed
Berkovich disc and an open Berkovich subdisc, as in the Figure 4.

Figure 4. Open annulus: The dashed inner closed Berkovich disc

represents the closed disc ”taken out” from the bigger open disc.

3 Relation to curves in characteristic p > 0

3.1 Semistable curves

In this section we shortly present without going into details and definitions how one can
”visualize” general smooth, connected, compact Berkovich curves using their semistable
models. We begin with an exercise.

Exercise 3.1 Prove that the the set of points C◦p := {α ∈ Cp, |α|p} is a ring in Cp having
only one maximal ideal given by the set C◦◦p := {α ∈ Cp, |α|p < 1}. We call the field
C◦p/C◦◦p the residue field of Cp.

Remark 3.2 It can be shown that the residue field of Cp is isomorphic to the algebraic
closure Fp of the finite field Fp.

Definition 3.3 We say that an Fp-curve C is semistable, if all the singularities on C are
regular.

Theorem 3.4 (Bosch-Lütkebohmert-Berkovich) Given a semistable curve C, we can as-
sign to it a compact, connected, smooth Berkovich curve (over Cp) CB together with an
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(anticontinuous) map CB → C and a set S consisting of finitely many type II points in
CB such that

(a) The map induces a 1-1 correspondence between generic points and the set S in CB.

(b) The preimage of a smooth point in C is an open disc attached to the corresponding
point in S.

(c) The preimage of a singular point is an open annulus connecting the corresponding
two points in S.

Moreover, every compact, connected, smooth Berkovich curve over Cp comes in this way.

Figure 5. An example of a semistable Fp-curve. Figure 6. An example of a Fp-curve which is not

semistable.

3.2 Example: Tate elliptic curve

In Figures 7 and 8 are given a semistable curve over Fp and the corresponding Berkovich
curve, which is called Tate elliptic curve.

Figure 7. A semistable Fp-curve with emphasized

generic points of the irreducible components.

Figure 8. The corresponding Berkovich curve. The

red points correspond to the set S in Theorem 3.4.
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Perhaps, the reader will appreciate an artistic interpretation of the Tate elliptic curve
presented in the next figure.

Figure 9. Tate elliptic curve: artistic version.
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On differential operators and multipliers

in weighted Sobolev spaces

Aigul Myrzagaliyeva (∗)

Abstract. In this talk, we introduce differential operators and pointwise multipliers in weighted
Sobolev spaces. We give the statement and motivation of the problem. We obtain boundedness
conditions and norm estimates for the differential operator L from the weighted Sobolev space Wn

p,v

to the weighted Lebesgue space Lq,ω and for the multiplication operator T from Wn
p,v to W l

q,ω0,ω1
,

where W l
q,ω0,ω1

is a weighted Sobolev space on R. Moreover, we also present some open problems.

1 Introduction

We consider the differential operator of the form

(1) Ly =

l∑
k=0

ρk(x)y(k) (x ≥ 0),

where ρk(·) ∈ Lloc(I), I = (0,∞), l ≥ 1 is an integer. Here Lloc(I) is the class of all locally
summable functions in I. In the sequel, we assume that L is defined on a subspace D(L)
of Wn

p,v. We denote by Wn
p,v(I) (n ≥ 1− integer, 1 < p <∞) the weighted Sobolev space

of all functions y, having absolutely continuous derivatives up to order n−1 in I and finite
weighted norm in the following form

∥∥y;Wn
p,v(I)

∥∥ =

∫
I

(∣∣∣y(n)(x)
∣∣∣p + |y(x)|p v(x)

)
dx

 1
p

,

Wn
p = Wn

p,v, v ≡ 1. Here v(·) be a weight in I, i.e. it is an almost everywhere positive
locally integrable function. We denote by Lq,ω(I) the weighted Lebesgue space of all
measurable functions in I with the norm

‖f‖q,ω = ‖f ; Lq,ω (I)‖ =

∫
I

|f (x)|q ω(x) dx

 1
q

<∞ (1 ≤ q <∞) ,

(∗)The L.N. Gumilyov Eurasian National University, Astana, Kazakhstan, Munaitpasov St., 5, 010008,
Astana, Kazakhstan; E-mail: . Seminar held on April 15th, 2015.
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Lq(I) = Lq,ω(I), ω ≡ 1.
The purpose of this paper is to obtain conditions for the boundedness of the differential

operator L as an operator acting from Wn
p,v(I) to the space Lq,ω(I) and to apply these

results to the study of multipliers in Sobolev spaces.
We define as length function in I any positive and right-continuous function h(·)

(h(·) is a l.f.). We denote by ∆(x) the segment [x,x+h(x)] for the l.f. h(·).
This paper is organized as follows: In Sec. 2, we introduce Sobolev spaces used as

function spaces and we give some examples to understand why such spaces are important.
In Sec. 3, you find basic definitions and notation. In Sec. 4, we present some new results
formulated as theorems.

2 Sobolev spaces

In mathematics, a Sobolev space is a vector space of functions equipped with a norm that
is a combination of Lp-norms of the function itself as well as its derivatives up to a given
order. The derivatives are understood in a suitable weak sense to make the space complete,
thus a Banach space. Intuitively, the Sobolev space is a space of functions with sufficiently
many derivatives for some application domain, such as partial differential equations. Their
importance comes from the fact that solutions of partial differential equations are naturally
found in Sobolev spaces, rather than in spaces of continuous functions. In the twentieth
century, however, it was observed that the space C1 (or C2, etc.) was not exactly the
right space to study solutions of differential equations. Sobolev spaces are the modern
replacement for these spaces in which to look for solutions of partial differential equations.

Let us consider the simplest example the Dirichlet problem for the Laplace equation
in a bounded domain Ω ⊂ Rn : {

∆u = 0, x ∈ Ω,

u(x) = ϕ(x), x ∈ ∂Ω,

where ϕ(x) is a given function on the boundary ∂Ω. It is known that the Laplace equation
is the Euler equation for the functional

l(u) =

∫
Ω

n∑
j=1

∣∣∣∣ ∂u∂xj
∣∣∣∣2 dx.

We can consider this problem as a variational problem: to find the minimum of l(u) on the
set of functions satisfying condition u|∂Ω = ϕ. It is much easier to minimize this functional
not in C1(Ω̄), but in a larger class. Namely, in the Sobolev class W 1

2 (Ω). W 1
2 (Ω) consists

of all functions u ∈ L2(Ω), having the weak derivatives ∂u ∈ L2(Ω), j = 1, . . . , n. If the
boundary ∂Ω is smooth, then the trace of u(x) on ∂Ω is well defined and relation u|∂Ω = ϕ
makes sense. If we consider l(u) on W 1

2 (Ω), it is easy to prove the existence and uniqueness
of solution of our variational problem. The function u ∈ W 1

2 (Ω), that gives minimum to
l(u) under the condition u|∂Ω = ϕ, is called the weak solution of the Dirichlet problem for
the Laplacian.
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Let us consider the following exterior Oseen problem to clarify the importance of the
weighted Sobolev space: 

−∆u+ k ∂u
∂x1

+∇π = 0 in Ω−,

divu = 0 in Ω−,

u = u∗ on ∂Ω−,

where Ω− ≡ R3\Ω̄, Ω = B(0, 1). The data are the boundary value u∗ and a real k > 0. The
problem consists of looking for the velocity field u of the fluid and the pressure function
π.

We introduce the weight function ρ(x) = 1+ |x|. Let us assume that (ũ, π) is a solution
of the problem and (ũ, π) equal to the fundamental solution of the Oseen system, which is
of class C∞ in Ω−. Then the boundary data u∗ is just the restriction to ∂Ω− = ∂Ω. As we
can easily show, the component u of the fundamental solution behaves like 1

ρ at infinity

and accordingly is not in W 1
2 (Ω−). However, it is in the weighted Sobolev space W 1

2,ρ(Ω
−).

3 Preliminaries and notation

Definition 1 (See [1]) A weighted function v in I is called admissible with respect to the
length function h(·), if there exist 0 < δ < 1, 0 < τ ≤ 1, such that the following inequality
is true

(2) h(x)
n− 1

p inf
{e}

 ∫
∆(x)\e

v(t) dt


1
p

≥ τ

for all x ∈ I.

In (2) the infimum is taken over all measurable subset e of ∆(x) with Lebesgue measure
|e| ≤ δ |∆(x)| . We denote by Πn,p(δ, τ) the set of admissible weights v with respect to the
l.f. h(·).

We give some examples.

Example 1 Since

h(x)
n− 1

p inf
{e}

 ∫
∆(x)\e

v(t) dt


1
p

= inf
{e}

 ∫
[x,x+1]\e

dt


1
p

≥ (1− δ)
1
p = τ,

the function v = 1 is admissible with respect to the l.f. h(·) = 1.

Definition 2 We say that a function ω(·) satisfies the slow variation condition with
respect to the l.f. h(·), if there exist constants 0 < b1 < 1 < b2 such that

(3) b1ω(x) ≤ ω(t) ≤ b2ω(x) for all t ∈ ∆(x).
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Example 2 Let v satisfy the slow variation condition (3) with respect to the l.f. h(x) = v(x)
− 1
np .

Then v is admissible with respect to the l.f. h(x) = v(x)
− 1
np when τp = b1(1 − δ). The

proof is trivial.

Every power function v (x) = (1 + |x|)µ , 0 < µ < +∞ satisfies the slow variation

condition with respect to the l.f. h (x) = (1 + x)
− µ
np . Indeed,(

1 + t

1 + x

)µ
≤
(

1 + x+ h(x)

1 + x

)µ
=

(
1 +

(
1

1 + x

)1+ µ
np

)µ
≤ 2µ = b2,(

1 + t

1 + x

)µ
=

(
1 + x+ t− x

1 + x

)µ
=

(
1 +

t− x
1 + x

)µ
≥ 1 > 2−µ = b1

for all t ∈ ∆(x).

Definition 3 We say that a weight v satisfies the condition A(δ,β) (0 < δ, β < 1) with
respect to the length function h(·) in I if for any interval ∆ = [a, b] ⊂ ∆(x) = [x, x+h(x)]
(x ≥ 0) and any measurable subset e of ∆ with the Lebesgue measure |e| ≤ δ|∆| the
following inequality holds ∫

e

v(t) dt ≤ β
∫
∆

v(t) dt.

We denote by A(δ,β) the set of all weights v which satisfy the condition A(δ,β). For example,

if b2b
−1
1 δ < 1 in (3), then v ∈ A(δ,β) with β = b2b

−1
1 δ.

Let v∗ be a Otelbayev function. Namely

v∗(x) = sup
h>0

h : hpn−1

x+h∫
x

v(t) dt ≤ 1


(see [2]). We first show that 0 < v∗(x) <∞ for all x ≥ 0. To do this, we note that

M(x, h; v)
def
= hpn−1

x+h∫
x

v(t) dt −−−−→
h→0+

0

and that M(x, h; v)→∞ if h→∞. Hence, there exist δx > 0 and Tx > 0, such that

M(x, h; v) ≤ 1, if 0 < h ≤ δx,
M(x, h; v) > 1, if h ≥ Tx.

Therefore, we obtain

(0, δx) ⊂ Hx,v = {h > 0: M(x, h; v) ≤ 1} ⊂ (0, Tx),

δx ≤ supHx,v = v∗(x) ≤ Tx.
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The function v∗ is continuous in I. By using absolute continuity property of the integral
we can imply that

v∗(x)pn−1

x+v∗(x)∫
x

v(t) dt = 1.

Example 3 Any weight v ∈ A(δ,β) with respect to the l.f. h(x) = v∗(x) in I is admissible
with respect to the l.f. h(x) = v∗(x). Thus, for all e ⊂ ∆∗(x) = [x, x+ v∗(x)] with the
measure |e| ≤ δ|∆∗(x)|, we have

v∗(x)pn−1

∫
∆∗(x)\e

v(t) dt = v∗(x)pn−1

 ∫
∆∗(x)

v(t) dt−
∫
e

v(t) dt

 ≥
≥ (1− β)v∗(x)pn−1

∫
∆∗(x)

v(t) dt = 1− β = τ.

Let Cn[a, b] (−∞ < a < b <∞) be the space of all functions y, having continuous
derivative up to order n in [a, b].

Proposition 1 (see [3]) Let 1 ≤ p < ∞. Then there exist constants A(n, j), A(n, j, p),
j = 0, 1, 2, . . . , n− 1 such that
(4)

max
a≤x≤b

∣∣∣y(j)(x)
∣∣∣ ≤ A(n, j)(b− a)n−j−1/p


b∫
a

∣∣∣y(n)(t)
∣∣∣p dt+ (b− a)−np

b∫
a

|y(t)|p dt


1/p

,

(5)
∥∥∥y(j);Lp[ a, b]

∥∥∥ ≤ A(n, j, p)(b− a)n−j
{∥∥∥y(n);Lp[ a, b]

∥∥∥+ (b− a)−n ‖y;Lp[ a, b]‖
}

for all functions y(·) ∈ Cn[a, b]. Here we understand that the symbols A(n, j), A(n, j, p)
denote the best choice of the constants in (4), (5).

Lemma 1 Let v belong to Πn,p(δ, τ) with respect to the l.f. h(·). Then there exists a
constant C∗ = C∗(δ, τ) > 1 independent of v(·) such that the following estimate is true

(6) h(x)−np
x+h(x)∫
x

|y|p dt ≤ C∗
x+h(x)∫
x

(∣∣∣y(n)
∣∣∣p + |y|p v(t)

)
dt (x ≥ 0)

for all y ∈ Cn (∆) , where ∆ = [x, x+ h(x)].
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4 Main results

4.1 One dimensional differential operators in weighted Sobolev spaces W n
p,v

Theorem 1 Let n > 1 be an integer. Let 1 < p ≤ q <∞. Let v belong to Πn,p(δ, τ) with
respect to the l.f. h(·). Let

Rk = sup
x≥0

h(x)
n−k− 1

p


x+h(x)∫
x

|ρk(t)|q dω(t)


1
q

<∞

for k = 0, 1, . . . , l (dω(t) = ω(t)dt) . Then the operator L in (1) is bounded from Wn
p,v(I)

to Lq,ω(I). Here the norm has the following form

(7)
∥∥L; Wn

p,v(I)→ Lq,ω(I)
∥∥ ≤ C l∑

k=0

Rk,

where C = (1 + C∗)
1
p

l∑
k=0

A(n, k).

Let us assume that the operator L in (1) is bounded as an operator from Wn
p,v to Lq,ω,

i.e. D(L) ⊂ Wn
p,v and there exists a constant K > 0 such that

(8)

∫
I

|Ly|q dω(t)

 1
q

≤ K‖y; Wn
p,v‖ (y ∈ D(L)).

Theorem 2 Let 1 < p, q < ∞. Let the operator L in (1) be bounded from Wn
p,v to Lq,ω.

Then

(9) R̃k = sup
x≥0

v∗(x)
n−k− 1

p


x+

3v∗(x)
4∫

x+
v∗(x)

4

|ρk(t)|q dω(t)


1
q

≤ C̃k
∥∥L; Wn

p,v → Lq,ω
∥∥ ,

where the constant C̃k > 0 does not depend on ρk (0 ≤ k ≤ l), ω, v.

We set

R∗ =
l∑

k=0

sup
x≥0

v∗(x)
n−k− 1

p


x+v∗(x)∫
x

|ρk(t)|q dω


1
q

,

R∗ =

l∑
k=0

sup
x≥1

v∗(x)
n−k− 1

p


x+

3v∗(x)
4∫

x+
v∗(x)

4

|ρk(t)|q dω


1
q

.
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Theorem 3 Let v belong to A(δ,β). Let R∗ < ∞. Then the operator L in (1) is bounded
from Wn

p,v to Lq,ω. Moreover,

C0R
∗ ≤

∥∥L; Wn
p,v → Lq,ω

∥∥ ≤ C1R∗.

The constants 0 < Ci < 1 depend only on n, p, l, δ, β.

The statements of Theorem 3 are direct consequences of Theorem 1 and Theorem 2.
The following result has been obtained in the monograph [4].

Corollary 1 Let 1 < p ≤ q <∞. The following statements are true:

a) Let the operator L in (1) be bounded from Wn
p to Lq,ω. Then

A =

l∑
k=0

sup
x≥1

x+1∫
x

|ρk|q dω <∞.

b) Let

A =
l∑

k=0

sup
x≥0

x+1∫
x

|ρk|q dω <∞.

Then the operator L in (1) is bounded from Wn
p to Lq,ω. Moreover,

C0 (A)
1
q ≤

∥∥L; Wn
p → Lq,ω

∥∥ ≤ C1

(
A
) 1
q ,

where the constants 0 < C0 < C1 and Ci (i = 0, 1) depend only on n, l, p and q.

The statement b) follows from Theorem 1, because v(x) = 1 ∈ Πn,p

(
2−1, 2

− 1
p

)
∩A( 1

2
, 1
2)

with respect to the l.f. h(x) = 1. The statement a) follows from Theorem 2, because
v∗(x) = 1 and

x+1∫
x

|ρk|q dω =

x+ 1
2∫

x

|ρk|q dω +

x+1∫
x+ 1

2

|ρk|q dω =

∫
∆̃(x− 1

4)

|ρk|q dω +

∫
∆̃(x+ 1

4
)

|ρk|q dω.

Corollary 2 Let v(x) =
(
1 + x2

)s
, ω(x) =

(
1 + x2

)β
, s, β > 0. Then the operator

Ly =

l∑
k=0

(
1 + x2

)αk y(k), −∞ < αk <∞,

is bounded from Wn
p,v to Lq,ω if and only if

(10) αk +
β

q
≤ s

np

(
n− k − 1

p
+

1

q

)
(k = 0, 1, . . . , l).
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Here if ρk(x) =
(
1 + x2

)αk the statements of Theorem 3 with respect to the l.f.

h(x) = v∗(x) ∼
(
1 + x2

)− s
np

are equivalent to the following conditions:

sup
x>0

(
1 + x2

)− s
np

(
n−k− 1

p
+ 1
q

)
+αk+β

q <∞ (k = 0, 1, . . . , l).

Such conditions are verified if and only if relation (10) holds.

4.2 Multipliers in weighted Sobolev spaces W n
p,v

The results obtained in this paper can be regarded as a natural extension of certain re-
sults (in dimension one) of the monograph ”Theory of multipliers in spaces of differentiable
functions” by the authors V.G. Maz’ya and T.O. Shaposhnikova. Such a book is currently
the only work in which the theory of pointwise multipliers in unweighted spaces of dif-
ferentiable functions is treated systematically. A part of the chapters of this work are
devoted to multipliers in classical Sobolev spaces Wn

p , n ≥ 0− integer, 1 ≤ p <∞.
Let X, Y be Banach spaces whose elements are functions y : Ω→ R (C). We say that

a function z : Ω→ R (C) such that the multiplication operator

Ty = zy, y ∈ X,

is bounded from X to Y, is a multiplier for a pair (X,Y ). We denote by M(X → Y ) the
space of all multipliers for the pair (X,Y ). We introduce the norm

‖z; M(X → Y )‖ = ‖T ; X → Y ‖ ,

in M(X → Y ).
Below as an application, we obtain the description of the space M(W1 → W2) for a

pair of weighted Sobolev spaces (W1,W2) with weights of general type.
It should be noted that there is enough active study of multipliers in function spaces

at present. Let us point out some specific directions through the works [5]-[13].
We denote by Al(I) the class of all functions y in I, having absolutely continuous

derivatives up to order l − 1 in I.
Let ω0, ω1 be weighted functions in I. Let l ≥ 1 be an integer. We denote byW l

q,ω0,ω1
(I)

the weighted Sobolev space of all functions y ∈ Al(I) equipped with the following weighted
norm ∥∥∥y; W l

q,ω0,ω1
(I)
∥∥∥ =

∥∥∥y(l); Lq,ω1(I)
∥∥∥+ ‖y; Lq,ω0(I)‖ .

Theorem 4 Let n > l ≥ 1 be integers, 1 ≤ p ≤ q <∞. Let v ∈ Πn,p(δ, τ) with respect to
the l.f. h(·) in I. Let µ ∈ Al(I). If

Mk,µ,ω1 = sup
x≥0

h(x)
n−k− 1

p


x+h(x)∫
x

∣∣∣µ(l−k)(t)
∣∣∣q dω1(t)


1
q

<∞ (k = 0, 1, . . . , l),
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M0,µ,ω0 = sup
x≥0

h(x)
n− 1

p


x+h(x)∫
x

|µ(t)|q dω0(t)


1
q

<∞,

then µ ∈M(Wn
p,v →W l

q,ω0,ω1
). Moreover,

∥∥∥µ; M(Wn
p,v →W l

q,ω0,ω1
)
∥∥∥ ≤ C [ l∑

k=0

Mk,µ,ω1 +M0,µ,ω0

]
,

where C = C(n, l, p, q) > 0.

Corollary 3 Let n > l ≥ 1, 1 < p ≤ q < ∞. Let µ ∈ Al. Then µ ∈ M(Wn
p → W l

q,ω0,ω1
)

if and only if

Uk = sup
x≥1

x+1∫
x

|µ(k)|q dω1 <∞ (k = 0, 1, . . . , l),

V = sup
x≥1

x+1∫
x

|µ|q dω0 <∞.

Previously, the description of the space M(Wn
p,v → W l

q,ω0,ω1
) was obtained in [14]. There

were used more complex terms, which included special maximal operators M∗ωi, i = 1, 2.
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Preferences in AI

Cristina Cornelio (∗)

Abstract. Artificial Intelligence (AI) is a field that has a long history but still constantly and
actively growing and changing. The applications of AI are several, for example web search, speech
recognition, face recognition, machine translation, autonomous driving, automatic scheduling etc.
These are all complex real-world problems, and the goal of artificial intelligence is to tackle them
with rigorous mathematical tools: machine learning, search, game playing, Markov decision pro-
cesses, constraint satisfaction, graphical models, and logic. Recently, a new concept became very
important in AI: the use of preferences. Let’s think about social networks, online shops, systems
that suggest music or films. In this document it is presented an overview on the main formalisms
of qualitative preferences in AI, a particular subset of models to represent preferences, very useful
in real word applications.

1 Artificial Intelligence: an overview

Artificial Intelligence (AI) is a big field and there are many important applications of AI
technology in the real world. Most important are:

• Robotics. Robotics is widely used in industrial automation, but they are also used
as medical surgery support to help doctors in complicated surgical procedures. Arti-
ficial body components (arms, legs) and also artificial organs (heart) was developed
to interact directly with the human brain. Robotics is widely used in space explo-
ration or to develop exploration robots for difficult conditions, for example with too
hight/low temperature or pressure (e.g. deep sea).

• Natural language processing. The goal of this subfield is the direct interaction
human-machines. A machine has to understand a text and to make a summary, to
translate a text in a proper way, to recognize if two texts are written by the same
person, or to search text following the meaning and not following only the words in
the name.

• Autonomous control systems and planning. Autonomous schedule and plan-
ning is mainly useful for robotic application (e.g. industrial robot and management
of the production line), but also in control system. Let’s think about the electricity

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on April 29th, 2015.
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industries: Enel uses neural networks to manage the electricity switches between
the centrals, the amount of produced energy and the temperature of the areas of
production. This subfield is also used to solve conflicts with the instructions given
by different machines/sensors.

• Games. IBM’s Deep Blue became the first computer program that wins again the
world chess champion Garry Kasparov. Let’s think about the video-games market:
video-games are becoming increasingly realistic using AI components.

• Machine Learning. Machine Learning is a system that improves its performance
on a particular task using past experience. Examples of machine learning application
are auto-parking cars , driver-less cars (e.g. Google car), handwriting recognition
and speech recognition.

• Preferences. Preferences play an increasing role in the web application. Recom-
mender systems are hidden behind many web sites (e.g. Amazon or Netflix) to
suggest music, films, or products.

2 Qualitative Preferences on combinatorial domains

The ability to express preferences in a faithful way, which can be handled efficiently, is
essential in many reasoning tasks. In settings such as e-commerce, on demand video,
and other settings where supply outstrips an individuals ability to view all the available
choices, we require an efficient formalism to model and reason with complex, interdepen-
dent preferences. We may also use these preferences to make decisions about joint plans,
actions, or items in multi-agent environments. Agents express their preferences over a set
of candidate decisions, these preferences are aggregated into one decision which satisfies as
many agents as possible. Often multi-attribute preference modeling and reasoning causes
a combinatorial explosion. The set of candidates is often described as a product of mul-
tiple features, for example, a users preferences over a set of cars, which can be described
by their colors, technical specifications, cost, reliability, etc. A number of compact rep-
resentation languages have been developed in the literature to tackle the computational
challenges arising from these problems. The main tool for representing and reasoning with
conditional preference statements of a single agent are the CP-nets. A more general and
complete version of CP-nets are the GCP-nets, introduced in the following section (Sec-
tion 3). Then we will introduce the other main formulations of qualitative preferences on
combinatorial domains.

3 GCP-nets

GCP-nets ([7] and [6]) allow a general form of conditional and qualitative preferences to
be modeled compactly.

Definition 3.1 A Generalized CP-net (GCP-net) C over Var is a set of conditional
preference rules. A conditional preference rule is an expression p : l > l, where l is

Università di Padova – Dipartimento di Matematica 91



Seminario Dottorato 2014/15

a literal of some atom X ∈ Var and p is a propositional formula over Var that does not
involve variable X. A GCP-net corresponds to a directed graph (dependency graph) where
each node is associated with a feature and the edges are pairs (Y,X) where Y appears in
p in some rule p : x > x or p : x > x. Each node X is associated with a CP-table which
expresses the user preference over the values of X. Each row of the CP-table corresponds
to a conditional preference rule.

The CP-tables of a GCP-net can be incomplete (i.e. for some values of some variables’
parents, the preferred value of X may not be specified) and/or locally inconsistent (i.e.
for some values of some variables’ parents, the table may both contain the information
x > x and x > x). CP-nets [2] are a special case of GCP-net in which the preferences are
locally consistent and locally complete.

An outcome in a GCP-net is a complete assignment to all features. For example, given
Var = {X1, X2} and binary domains D1 = D2 = {T, F}, all the possible outcomes are
TT , TF , FT and FF .

A worsening flip is a change in the value of a feature to a value which is less preferred
according to the cp-statement for that feature. This concept defines an order over the set
of outcomes such that one outcome o is preferred to another outcome o′ (o � o′) if and only
if there is a chain of worsening flips from o to o′. The notion of worsening flip induces a
preorder over the set of outcomes. This preorder allows maximal elements that correspond
to the so-called optimal outcomes, which are outcomes that have no other outcome better
than them.

Given any GCP-net and CP-net the problems of consistency checking and finding
optimal outcomes are PSPACE-complete [7]. Moreover, there could be several different
maximal elements. When the dependency graph has no cycle the CP-net is called acyclic.
The optimal outcomes for such nets are unique and can be found in polynomial time in N .
The procedure used to this purpose is usually called a sweep forward and takes N steps
[2].

The problem of dominance testing (i.e. determining if one outcome is preferred to
another) is PSPACE-complete for both GCP-nets and CP-nets. It is polynomial if the
CP-nets are tree structured or poly-tree structured [5, 7].

4 CP-nets

CP-nets are a graphical model for compactly representing conditional and qualitative pref-
erence relations [2]. They exploit conditional preferential independence by decomposing an
agent’s preferences via the ceteris paribus (cp) assumption (all other things being equal).

CP-nets correspond to complete and locally consistent GCP-nets.
CP-nets bear some similarity to Bayesian networks [4]: both use directed graphs where

each node stands for a domain variable, and assume a set of features F = {X1, . . . , Xn}
with finite domains D1, . . . , Dn.

Definition 4.1 A CP-net (conditional preference network) over features F = {X1, . . . , Xn}
with finite domains D1, . . . , Dn is a direct graph G over F in which:
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• each node corresponds to a variable Xi ∈ F ;

• a set of direct edges connects pairs of nodes (if there is an edge from node Xi to
node Xj , Xi is said to be a parent of Xj , Xi ∈ Pa(Xj)); this defines a dependency
graph in which each node Xi has Pa(Xi) as its immediate predecessors.

• each node Xi has a conditional preference tables (CP-table) in which the user ex-
plicitly specifies her preference over the values of Xi for each complete assignment
on Pa(Xi). This preference is a total or partial order over the domain of Xi.

Note that the number of complete assignments over a set of variables is exponential
in the size of the set. Throughout this paper, we assume there is an implicit constant
that specifies the maximum number of parent features, |Pa(X)|, that any feature may
have. With this restriction, and an implicit bound on |DX | (the domain of the variable
X), we can and do treat the size of the conditional preference representation for any X as
a constant.

An acyclic CP-net is one in which the dependency graph is acyclic. A CP-net need
not be acyclic. For example, my preference for the entree may depend on the choice of
the main course, and my preference for the main course may depend on the choice of the
entree. However, in this paper we focus on acyclic CP-nets.

Example 4.1 Consider a CP-net (Figure 1) whose features are X1, X2, X3, and X4,
with binary domains containing x and x if X is the name of the feature, and with the
preference statements as follows: x1 > x1, x2 > x2, (x1 ∧ x2) ∨ (x1 ∧ x2) : x3 > x3,
(x1∧x2)∨(x1∧x2) : x3 > x3, x3 : x4 > x4, x3 : x4 > x4. Here, statement x1 > x1 represents
the unconditional preference for X1 = x1 over X1 = x1, while statement x3 : x4 > x4 states
that X4 = x4 is preferred to X4 = x4, given that X3 = x3.

X1 X2

X3

X4

x1 > x1 x2 > x2

x1x2 : x3 > x3

x1x2 : x3 > x3

x1x2 : x3 > x3

x1x2 : x3 > x3

x3 : x4 > x4

x3 : x4 > x4

Figure 1. CP-net of Example 4.1.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening flip
is a change in the value of a variable to a value which is less preferred by the cp-statement
for that variable. We say that one outcome α is better than another outcome β (written
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α > β) if and only if there is a chain of worsening flips from α to β. This definition induces
a preorder over the outcomes.

In general, finding optimal outcomes and testing for optimality in this ordering is NP-
hard. However, in acyclic CP-nets, there is only one optimal outcome and this can be
found in as many steps as the number of features via a sweep forward procedure [2]. We
sweep through the CP-net, following the arrows in the dependency graph and assigning
at each step the most preferred value in the preference table. More formally:

Definition 4.2 The sweep forward procedure, in acyclic CP-nets, to achieve the optimal
value is as follows:

• Step 0 : We choose for the CP-nets independent features the value that it is ranked
first in the ordering of the domains values.

• Step i : For each feature that it is not yet assigned and that has the values assign-
ments of all the parents, we choose the value that it is most preferred (so ranked first)
in the ordering of the domains values (in the rows corresponding to that particular
assignments for the parentss values).

Example 4.2 For instance, in the CP-net above (Example 4.1), we would choose X1 = x1

and X2 = x2, then, because the parents X1X2 = x1x2, we choose X3 = x3 and then,
because X3 = x3 we obtain X4 = x4. The optimal outcome is therefore x1x2x3x4.

Each step in the sweep forward procedure is exponential in the number of parents of
the current feature, and there are as many steps as features. In this paper we assume the
number of parents is bounded, so this algorithm takes time polynomial in the size of the
CP-net.

In the general case the optimal outcome coincides with the solutions of a constraint
problem obtained replacing each cp-statement with a constraint. For example, the follow-
ing cp-statement (concerning the Example 4.1) (x1 ∧ x2) ∨ (x1 ∧ x2) : x3 > x3 would be
replaced by the constraint (x1 ∧ x2) ∨ (x1 ∧ x2)⇒ x3 > x3.

Determining if one outcome is better than another according to this ordering (called
a dominance query) is NP-hard even for acyclic CP-nets [5, 7]. Whilst tractable special
cases exist, there are also acyclic CP-nets in which there are exponentially long chains of
worsening flips between two outcomes.

Example 4.3 In the CP-net of the Example 4.1, x1x2x3x4 is worse than x1x2x3x4.

4.1 Variants of CP-nets

CP-nets are deeply studied and widely used, thus many variants and generalization was
developed. The main are the following:

• TCP-nets (Tradeoffs-enhanced CP-nets) [3] are a extension of CP-net that permits
to represent also the notion of relative importance and conditional relative impor-
tance. A variable X is relative more important respect to a variable Y (X B Y ) if
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the it is more important that the value of X be high than that the value of Y be
high. For instance “The length of the journey is more important to me than the
choice of airline”. A variable X is relative more important respect to a variable Y
given an assignment of a variable Z (Z = z0 : X B Y,Z = z1 : Y B X) if the it
is more important that the value of X be high than that the value of Y be high,
given the evidence that Z = z0. For instance “The length of the journey is more
important to me than the choice of airline provided that I am lecturing the following
day. Otherwise the choice of airline is more important”. This formulation introduce
the CI-tables (conditional importance tables) to the dependency graph, to express
the conditional importance statements.

• UCP-nets (Utility Conditional Preference networks) [1] are an extension of CP-
nets in which the preferences are expressed in a quantitative formulation, and not
only qualitative as in CP-nets. Each varible express the preferences of the user in
a table that contains the user utility values of the values in the variable domain. A
CP-statement of the form x : y > y is represented in UCP-net by fY (y|x) = u1,
fY (y|x) = u2 and u1 > u2 where fY is the utility function of the variable Y .

• mCP-nets (multi-agent Conditional Preference networks) [8] are an extension of
CP-net formalism to model and handle the preferences of multiple agents. A mCP-
net is a set of m partial CP-nets (CP-net with partial or missing information) which
can share some features. A mCP-net dependency graph is obtained by combining
the graphs of the partial of the parial CP-nets having one occurrence of each shared
feature. A feature can be shared between the CP-nets, visible to other CP-nets that
can use this feature as precondition in the CP-statements, or private if is ranked in
only one CP-net and is not visible to the other CP-nets.

5 CP-theories and Comparative Preference languages

Other important generalizations of CP-nets are CP-theories and comparative preference
languages, two different logic formulation of qualitative preferences. The corresponding
theories and languages are defined below.

5.1 CP-theories

CP-theories are introduced in [9] as a logic of conditional preference which generalizes
CP-nets.

Definition 5.1 Given a set of variables Var = {X1, · · · , XN} with domains Di, i =
1, . . . , n, the language LVar is defined by all the statements of the form: u : xi � x′i[W ]
where u is an assignment of a set of variables U ⊆ Var \ {Xi}, xi 6= x′i ∈ Di and W is a
set of variables such that W ⊆ (Var \ U \ {Xi}).

Definition 5.2 Given a language LVar as defined above, a conditional preference theory
(CP-theory) Γ on Var is a subset of LVar . Γ generates a set of preferences that cor-
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responds to the set Γ∗ =
⋃
ϕ∈Γ ϕ

∗ where given ϕ = u : xi � x′i[W ], ϕ∗ is defined as
ϕ∗ = {(tuxw, tux′w′) : t ∈ Var \ ({Xi ∪ U ∪W}), w, w′ ∈W}.

A CP-net is a particular case of a CP-theory where W = ∅ for all ϕ ∈ Γ.
Two graphs are associated to a CP-theory: H(Γ) = {(Xj , Xi)|∃ϕ ∈ Γ s.t. ϕ = u : xi �

x′i[W ] and Xj ∈ U} and G(Γ) = H ∪ {(Xi, Xj)|∃ϕ ∈ Γ s.t. ϕ = u : xi � x′i[W ] and Xj ∈
W}.

The semantics of CP-theories depends on the notion of a worsening swap, which is a
change in the assignment of a set of variables to an assignment which is less preferred by
a rule ϕ ∈ Γ. We say that one outcome o is better than another outcome o′ (o � o′) if and
only if there is a chain of worsening swaps (a worsening swapping sequence) from o to o′.

Definition 5.3 A CP-theory Γ is locally consistent if and only if for all Xi ∈ Var and
u ∈ Pa(Xi) in the graph H(Γ), �Xiu is irreflexive.

Local consistency can be determined in time proportional to |Γ|2N . Given a CP-theory
Γ, if the graph G(Γ) is acyclic, Γ is consistent if and only if Γ is locally consistent, thus
global consistency has the same complexity as local consistency given an acyclic graph
G(Γ).

5.2 Comparative Preference languages

Comparative Preference theories [10] are an extension of CP-theories.

Definition 5.4 The comparative preference language CLVar is defined by all statements
of the form: p > q||T where P , Q and T are subsets of Var and p and q are assignments
respectively of the variables in P and in Q.

Definition 5.5 Given a language CLVar as defined above, a comparative preference theory
Λ on Var is a subset of CLVar . Λ generates a set of preferences that corresponds to the
set Λ∗ =

⋃
ϕ∈Λ ϕ

∗ where if ϕ = p > q||T , ϕ∗ is defined as a pair (α, β) of outcomes such
that α extends p and β extends q and α and β agree on T : α �T= β �T .
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Variational methods in Nonlinear

Elasticity: an introduction

Alice Fiaschi (∗)

Abstract. After a brief introduction of the variational formulation for the standard model in
nonlinear elasticity, we consider the problem of finding the “right” space to describe the equilibrium
configurations of an elastic body, from the point of view of the Calculus of Variations. In this
framework, we introduce the space of Young measures as a suitable space to describe materials
exhibiting microstructures.

1 The standard model in nonlinear elasticity

We can describe the standard model in nonlinear elasticity as follows:

x u(x)

u0 u0

Ω

Γ

• Reference configuration (represents the space occupied by the undeformed body): a
bounded connected domain Ω ⊂ R3 with “smooth” boundary;

• Deformation (describes the transformation which occurs to our material): a function
u : Ω→ R3;

• Prescribed boundary deformation (imposes a constraint on the possible changes in
the material configuration): a function u0 : Γ ⊆ ∂Ω→ R such that u = u0 on Γ;

• Stored energy density (represents the energy density associated to a deformation): a
function W : Ω×M3×3 → [0,+∞];

(∗)Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on May 6th, 2015.
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• Body forces density (describes the other forces acting on the material): a function
f : Ω× R3 → R.

To have a physically consistent model, we need to impose some conditions on the stored
energy density W :

• Frame-indifference, to guarantee that no change of energy is associated with rota-
tions:

W (x, F ) = W (x,RF ) for every x ∈ Ω, F ∈M3×3, R ∈ SO(3);

• Orientation preservation, to select only deformations which preserve the orientation:

W (x, F ) = +∞ if detF ≤ 0;

• Non-interpenetration condition, to exclude deformations which are not “invertible”:

W (x, F )→ +∞ as detF → 0+;

• Energy growth, to guarantee that infinite energy is associated with infinite strain:

W (x, F )→ +∞ as |F | → +∞.

Example W (F ) = a|F |2 + g(detF ), with lim
t→0

g(t) = +∞, is the energy of an Ogden material.

A possible way to guarantee energy growth is a p-growth condition from below:

W (x, F ) ≥ a|F |p + b(x) .

We denote the total energy of the body by I, so that

I(u) =

∫
Ω
W (x,∇u(x)) dx−

∫
Ω
f(x, u(x)) dx ,

where u is a deformation. The equilibrium configurations of our model are the minimizers
of I satisfying the boundary condition u = u0 on ∂Ω. In particular, if w, f and u are
smooth enough, the equilibrium configurations satisfy the Euler-Lagrange equation:

−∇ ·
(∂W
∂F

(x,∇u(x))
)

=
∂f

∂u
(x, u(x)) .

The questions are: do minimizers exist ? And, if any, in which space ?
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A first attempt is to look for minimizers among C2 functions in order to use Euler-Lagrange
equation: but this approach is not always sucessful, as the following classical example
shows.

Example We look for minimizers of

I(u) :=

∫ 1

0

(u′2(x)− 1)2 dx

among u ∈ C1
0 (0, 1) := {u ∈ C1(0, 1), u(0) = u(1) = 0}. We claim that

inf
C1

0 (0,1)
I(u) = 0 .

Namely, let un(x) :=

∫ x

0

vn(t) dt, where

vn(t) :=


1 for t ∈ [0, 12 −

1
n ]

n
(

1
2 − x

)
for t ∈ [ 12 −

1
n ,

1
2 + 1

n ]

−1 for t ∈ [ 12 + 1
n , 1] :

0

1

-1

1/2 1

vn

v
4

then it is easy to see that I(un) =
∫ 1

0
(v2n − 1)2 dx → 0 as n → +∞, and this proves the claim.

But if u ∈ C1
0 (0, 1) is such that I(u) = 0, then u′(x) ∈ {1,−1} for every x ∈ [0, 1], hence u′ ≡ 1 or

u′ ≡ −1 (since u′ is continuous), and therefore u could not satisfy the required boundary condition
u(0) = u(1) = 0. Hence the minimum problem has NO solution in C1, and a fortiori in C2.

On the other hand, if we consider the pointwise limit u
min

of the
sequence un:

u
min

(x) :=

{
x for x ∈ [0, 12 ]
1− x for x ∈ [ 12 , 1]

then I(u
min

) = 0 !

1/2

0 1/2 1

um

Now, u
min

clearly does not belong to C1
0 (0, 1) but rather to W 1,4

0 (0, 1) (see below), so this function
should be viewed as a minimizer of I(u) in this larger space.

Recall that u is an element of the Sobolev space W 1,p(0, 1) if u ∈ Lp(0, 1) and there exists a function

v ∈ Lp(0, 1) such that for every φ ∈ C∞c (0, 1) it holds
∫ 1
0 u(x)φ′(x) dx = −

∫ 1
0 v(x)φ(x) dx (the function v is

called the weak derivative of u and is denoted by u′). The norm on W 1,p(0, 1) is ‖u‖W1,p = ‖u‖Lp +‖u′‖Lp .

The space W 1,p
0 (0, 1) is defined as the closure of C∞0 (0, 1) in W 1,p(0, 1) with respect to the norm ‖u‖W1,p .
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The weak derivative of u
min

is v
min

(x) :=

{
1 for x ∈ [0, 12 )
−1 for x ∈ ( 1

2 , 1]
: indeed

∫ 1

0

u
min

(x)φ′(x) dx =

∫ 1
2

0

xφ′(x) dx+

∫ 1

1
2

(1− x)φ′(x) dx

=
[
xφ(x)

]1/2
0
−
∫ 1

2

0

φ(x) dx+
[
(1− x)φ(x)

]1
1
2

−
∫ 1

1
2

(−1)φ(x) dx

=
1

2
φ( 1

2 )−
(

1− 1
2

)
φ( 1

2 )−
∫ 1

0

v
min

(x)φ(x) dx = −
∫ 1

0

v
min

(x)φ(x) dx .

Hence u
min
∈W 1,4(0, 1) and I(u

min
) =

∫ 1

0
(v

min
(x)2 − 1) dx = 0 , as claimed.

2 The Direct Method of the Calculus of Variations

The previous example is in fact an instance of a more general situation.

Theorem (Existence Theorem) Let p > 1, and let W : Ω × R3 ×M3×3 → [0,+∞] be a
continuous map such that

• W (x, u, F ) ≥ a|F |p + b|u|q + c(x), for a > 0, b ∈ R, c ∈ L1(Ω), 1 ≤ q < p (coer-
civeness);

• the map F 7→W (x, u, F ) is convex (convexity).

Then there exists (at least) one minimizer of I(u) =
∫

ΩW (x, u(x),∇u(x)) dx in u0 +

W 1,p
0 (Ω), provided I(u0) < +∞.

A minimizing sequence is a sequence un ∈ u0 +W 1,p
0 (Ω) with I(un)→ inf I.

We just give an idea of the proof of the existence theorem:

• coerciveness implies the compactness of a minimizing sequence in the weak topology
of W 1,p, hence unk ⇀ u for some subsequence (unk)k;

• convexity implies the lower semicontinuity of I with respect to the weak topology of
W 1,p, hence I(u) ≤ lim inf I(unk) = inf I.

The point is rather that the hypothesis of convexity is incompatible with our physical
assumptions on W , as the following simple example shows.

Example Recall that among our physical assumptions we required that W (RF ) = W (F ) for every
R ∈ SO(3), and that W (F ) → +∞ if detF → 0. Now, for simplicity let us consider F ∈ M2×2

and suppose W (1) < +∞. Let R =

(
cosα − sinα
sinα cosα

)
. Since 1

2R + 1
2R

T = (cosα)1, convexity

implies that W ((cosα)1) ≤ 1
2W (R) + 1

2W (RT ) = W (1)< +∞; but for α→ π
2 , det((cosα)1)→ 0

although W ((cosα)1) is bounded from above by W (1) < +∞.
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So, could we do without convexity ? If we are looking for a minimizer in the usual sense of
function, the general answer is no, as the following examples show.

Example (Bolza example) We look for minimizers of

I(u) =

∫ 1

0

[(u′2 − 1)2 + u2] dx in W 1,4
0 (0, 1).

Let

u1(x) :=

{
x for x ∈ [0, 12 ]
1− x for x ∈ [ 12 , 1]

un(x) :=
1

2n−1
u1(frac(2n−1x)) for n ≥ 1

1/2

0 1/2 1

u

1

2

3

4

u

u

u

(here frac : R→ [0, 1[ denotes the fractional part). Since I(un) ≤ 1/22n, it follows that inf I(un) =
0; but I(u) = 0 implies u ≡ 0, hence u′ ≡ 0. Therefore there are no minimizers for I(u) in W 1,4

0 !

Actually, in the previous example we deal with an energy density ( (ξ, F ) 7→ (|F |2−1)+ξ2 )
depending not only on (x,∇u) as our W does, but also on u. Unfortunately the lack of
convexity of W gives troubles also in the case of energy density depending just on ∇u, as
the following example shows.

Example We look for minimizers of

I(u) =

∫ 1

0

∫ 1

0

[(u2y − 1)2 + u2x] dx dy in W 1,4
0 ([0, 1]× [0, 1]).

We consider the zig zag function u1 of the previous example,
and define a sequence uδn(x, y) := 1

2n−1u1(frac(2n−1y)) for
δ < x < 1− δ (depending only on y) with 0 < δ << 1, and
we use linear interpolation to achieve the boundary values
at x = 0 and x = 1. Considering first the limit as n → ∞
and then as δ → 0 (with 1

nδ remaining bounded) we obtain
inf I(u) = 0. But the requirements ux = 0 and uy = ±1
are incompatible with the boundary conditions. Therefore,
once more, there are no minimizers for I(u) in W 1,4

0 .

u y=-1

u  =1y

      linear 
interpolation

1/2n

δ δ(0,0) (1,0)

(0,1)

If we cannot hope to find a function minimizing our
energy functional, we are forced to describe our model
through minimizing sequences. In this change of per-
spective, the first remark is that for a given variational
problem there are usually many minimizing sequences :
for example, the picture on the right shows different
minimizing sequences for Bolza example.

0 1/2
1

1
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The question is therefore the following: is it possible to describe the “macroscopic” fea-
tures” of these sequences ?
An object describing the macroscopic behaviour of a sequence un : Ω→ Rd should at least
determine the limits of ∫

Ω
f(un) dx,

for continuous functions f . With this purpose in mind we introduce Young measures.

3 Young measures

Let us start with a particular case: what can we say of the limit of∫ 1

0
g(x)f(v(nx)) dx for f ∈ C(R) , g ∈ L1(0, 1)

as n→ +∞, for v the function of L∞(0, 1) in the picture on the right?

A useful tool to treat such a question is the classical

1

0

-1

0

-1

1

1

-1

0

1

0

-1

Proposition (Riemann-Lebesgue Lemma) Let w ∈ L∞(a, b), extend it by periodicity to
R and set wn(x) := w(nx). Then

wn ⇀∗ w̄ :=
1

b− a

∫ b

a
w(y) dy in L∞(a, b).

In our case w(x) = f(v(x)): hence∫ 1

0
g(x)f(v(nx)) dx→

∫ 1

0
g(x)

∫ 1

0
f(v(y)) dy dx

=

∫ 1

0
g(x)

[1

2
f(1) +

1

2
f(−1)

]
dx =

∫ 1

0

∫
R
g(x)f(ξ) d

[1

2
δ1 +

1

2
δ−1

]
(ξ) dx,

where δξ0 is the Delta of Dirac:

δξ0(A) =

{
1 if ξ0 ∈ A
0 if ξ0 /∈ A

,

∫
R
f(ξ) dδξ0(ξ) = f(ξ0).

In other words we have

∫ 1

0
g(x)f(v(nx)) dx→

∫ 1

0
g(x)f(ξ) dµ(x, ξ) where µ is the mea-

sure defined as∫
(0,1)×R

ϕ(x, ξ) dµ(x, ξ) =

∫ 1

0

∫
R
ϕ(x, ξ) d

[1

2
δ1 +

1

2
δ−1

]
(ξ)
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for every bounded Borel function ϕ. We say that µ is the Young measure associated with
the minimizing sequence vn. In general, a Young measure µ on Ω with values in Rd can
be identified with a measurable family (µx)x∈Ω of probability measures µx on Rd by∫

Ω×R
ϕ(x, ξ) dµ(x, ξ) =

∫
Ω

∫
R
ϕ(x, ξ) dµx(ξ) dx

for every bounded Borel function ϕ.

Coming back to our modeling problem, we need to translate it in terms of Young measures
as summarized in the following table, where the question marks represent the still unclear
translations:

Functions Young measures

v : Ω→ Rd (δv(x))x∈Ω measure on Ω× Rd∫
Ω
W (x, v(x)) dx

∫
Ω×Rd

W (x, ξ) dδv(x)(ξ)dx

‖vn‖p bounded (p > 1) ?
⇒ vn ⇀ v weakly in Lp

(up to a subsequence)

∫
ΩW (x, vn(x)) dx

∫
Ω×RN W (x, ξ) dδvn(x)(ξ)dx

not lower semicontinuous with ?
respect to weak convergence in Lp

To clear these question marks out, we must define a suitable topology on the space
Y (Ω;Rd) of Young measures and clarify some related notions: let us give a brief sketch of
that.

Let C0(Ω × Rd) be the space of continuous functions ϕ such that the sets {|ϕ| ≥ ε} are
compact for any ε > 0, and let Mb(Ω×Rd) be the space of bounded Radon measures, i.e.
the dual space of C0(Ω×Rd): therefore, for µ ∈Mb(Ω×Rd) and ϕ ∈ C0(Ω×Rd) we have
a duality represented by 〈ϕ, µ〉 =

∫
Ω×Rd ϕ dµ. From this duality we inherit a notion of

weak* convergence, as follows:

µn ⇀
∗ µ ⇐⇒

∫
ϕ dµn →

∫
ϕ dµ for any ϕ ∈ C0(Ω× Rd).

A Young measure µ = (µx)x∈Ω is an element of M+
b (Ω×Rd) satisfying µ(A× Rd) = LN (A)

for every measurable set A ⊂ Ω: hence in particular Y (Ω;Rd) inherits the weak* topology
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from Mb(Ω × Rd). Moreover, if ϕ is continuous and ϕ ≥ 0, then the function µn 7→∫
Ω×Rd ϕ(x, ξ) dµn is lower semicontinuous with respect to weak* convergence.

The p-moments of a Young measure µ are defined as
∫

Ω×Rd |ξ|
p dµ . If the p-moments of

a sequence (µn)n are equibounded we can deduce that (µn)n converges weakly*, up to a
subsequence.
Now, the p-moments of a sequence of Young measures µn associated with functions (∇un)n
(i.e. µn = (δ∇un(x))x∈Ω) are ‖∇un‖Lp . Since the growth condition W (x, F ) ≥ a|F |p + b(x)
implies ‖∇un‖Lp < C for any n, if un is a minimizing sequence we deduce that the p-
moments of minimizing sequences are equibounded.
Hence, thanks to the compactness property and the lower semicontinuity property de-
scribed here before, using the Direct Method we can find a minimizer in Y (Ω;Rd).

We can then complete the table above:

Functions Young measures

v : Ω→ Rd (δv(x))x∈Ω measure on Ω× Rd∫
Ω
W (x, v(x)) dx

∫
Ω×Rd

W (x, ξ) dδv(x)(ξ)dx

‖vn‖p bounded (p > 1) (δvn(x))x with equibounded p-moments

⇒ vn ⇀ v weakly in Lp ⇒ (δvn(x))x ⇀ µ weakly*

(up to a subsequence) (up to a subsequence)

∫
ΩW (x, vn(x)) dx

∫
Ω×RN W (x, ξ) dδvn(x)(ξ)dx

not lower semicontinuous with lower semicontinuous with
respect to weak convergence in Lp respect to weak* convergence

4 An example: Young measures and microstructures

A microstructure is any structure on a scale between macroscopic scale and the atomic
scale. In a variational model, microstructures are formed to try to satisfy an optimality
property.

Example Solid-solid phase transitions in certain elastic crystals (the picture shows a microstruc-
ture in Cu-Al-Ni).
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– Above the critical temperature θ0, Wθ(A) = 0

– Below the critical temperature, change of stability of the crystal structure:
Wθ(B) = 0

– At the critical temperature both phases are stable: Wθ0(A) = Wθ0(B) = 0

Boundary conditions are typically caused by contacts with other part of the crystal where other
deformation gradients prevail.

A nontrivial boundary condition λA+(1−λ)B causes no exact solutions: finer and finer mixtures
of A and B are requested, and this is ilustrated by an equilibrium configuration given in terms of
Young measures.
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Controllability and the numerical

approximation of the minimum time function

Thuy T.T. Le (∗)

Abstract. In optimal control theory, minimum time problems are of interest since they appear
in many applications such as robotics, automotive, car industry, etc.. The scope of this talk is
to give a brief introduction of these problems. Controllability conditions under various settings
are considered. Such conditions play a vital role in studying the regularity of the minimum time
function T (x). Moreover, we will also introduce the HJB equation associated with a minimum
time problem and approaches to computing T (x) approximately.

1 Preliminary

1.1 Control theory

A standard reference is [1]. Consider the following controlled dynamics in Rn

(1.1)

{
ẏ(t) = f(y(t), u(t)), t ∈ [0,+∞) a.e.

y(0) = ξ ∈ Rn,

where

+ U ∈ Rm is a control set

+ u : [0,+∞)→ U is a control function

Let S ∈ Rn be a target set and the set of admissible controls is defined as

Uad = {u : [0,+∞)→ U : u is measurable}.

The following assumptions are supposed to be satisfied in the sequel.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on May 27th, 20145.
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Assumptions 1.1

(1) f(x, u) is C∞ and all partial derivatives are Lipschitz with Lipschitz constant L > 0
w.r.t x, uniformly continuous w.r.t u; moreover, ‖f(y, u)‖ ≤ K0(1 + ‖y‖) for all
y ∈ Rn, where K0 is a positive constant

(2) S ∈ Rn is compact

(3) U ∈ Rm is compact

The minimum time problem is the one that determines a control, subject to its con-
straints, which drives the initial state ξ ∈ Rn \ S to the given target S in the smallest
amount of time.

Example 1.2 Imagine a railroad car powered by rocket engines on each side.

Let

+ x(t) is the position at time t

+ y(t) = ẋ(t) is the velocity at time t

+ u(t) ∈ [−1, 1] is the thrust from rockets, where its sign depends upon on which
engine is firing.

Assume the car has unit mass, then the law of the motion is ẍ(t) = u(t). The goal is to
figure out how to fire the rockets so that to arrive at the origin with zero velocity in a
minimum amount of time.

Given any ξ ∈ Rn and u ∈ Uad, a solution of{
ẏ(t) = f(y(t), u(t))

y(0) = ξ,

denoted by y(·, ξ, u) is called a trajectory starting from ξ associated with the control u.
For fixed ξ ∈ Rn \ S, the minimum time starting from ξ to reach the target S for some
u ∈ Uad is as

tS(ξ, u) = min {t ≥ 0 : y(t, ξ, u) ∈ S} ≤ +∞.

Then the minimum time function to reach S from ξ is defined as

TS(ξ) = inf
u∈Uad

tS(ξ, u).
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We also define the reachable sets for time t ≥ 0 as follows.

RS(t) = {ξ ∈ Rn : TS(ξ) < t}

is the set of starting points from which the system can reach the target in time less than
t.

RS = {ξ ∈ Rn : TS(ξ) < +∞}

is the set of starting points from which the system can reach the target in finite time.

1.2 Nonsmooth analysis

Now we will introduce some basic notions in nonsmooth analysis which are needed in this
context, see [3].

Definition 1.3 Let S ∈ Rn be closed and ρ > 0 be given. S satisfies a ρ–internal sphere
condition if for any x ∈ S there exists y such that x ∈ B(y, ρ) ⊂ S.

Definition 1.4 Let Ω ⊂ Rn be an open set. A function g : Ω→ R is locally semiconcave
if for every x ∈ Ω there exists a ball B(x, r) and a positive constant C such that

(1.2) λg(y) + (1− λ)g(y′) ≤ g(λy + (1− λ)y′) + C
∥∥y − y′∥∥2

for all y, y′ ∈ B(x, r) and all λ ∈ [0, 1].

Global semiconcavity means that the above inequality is satisfied by every y, y′ ∈ Ω
such that the segment [y, y′] ⊂ Ω with the same constant C. The constant C appearing
in (1.2) is labeled as semiconcavity constant.

Example 1.5 The distance function to B(0, r), d
B(0,r)

(x) = |x| − r, is semiconcave with

semiconcavity 1
r .

Definition 1.6 Let Ω ⊂ Rn be an open set, g : Ω → R. We say that a vector p belongs
to the proximal superdifferential of g at x (notated by p ∈ ∂P g(x)) if there exist σ > 0
such that

g(y) ≤ g(x) + 〈p, y − x〉+ σ ‖y − x‖2

for all y in a neighborhood of x.

2 Controllability

This section is devoted to small–time controllability of a given system and sufficient con-
ditions to guarantee that property.

Definition 2.1 The system (f, U) is
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(1) small–time controllable on S (briefly STCS) if S ⊂ int(RS(t)) for all t > 0.

(2) fully controllable if RS = Rn.

Let Sδ be an enlargement of S defined as follows Sδ = {x ∈ Rn : dS(x) < δ}. The
following proposition shows the connection between small–time controllable property and
the regularity of the minimum time function.

Proposition 2.2 (see [1]) Under the standard assumptions and STCS,

(1) RS is open;

(2) TS is continuous in RS;

(3) TS(x) ≤ ω(dS(x)) for all x ∈ Sδ, where ω : [0, δ]→ [0,+∞) and lims→0+ ω(s) = 0.

(4) limx→x0 TS(x) = +∞ for any x0 ∈ ∂RS.

Remark 2.3 If ω(dS(x)) = C dS(x), C > 0, TS(x) is locally Lipschitz continuous. If
ω(dS(x)) = C dS(x)γ , C > 0, 0 < γ < 1, TS(x) is locally Hölder continuous with exponent
γ.

Assume that ∂S is smooth enough, and the so called Petrov condition holds, i.e.

inf
u∈U
〈∇dS(x), f(x, u)〉 ≤ −µ < 0,

for x in a neighborhood Sδ of S, then any point of Sδ can be steered to S in finite time
TS(x) and TS(x) is Lipschitz continuous.
Let consider the following particular system

(2.1) f(x, u) = g1(x)u1 + g2(x)u2,

by subsequently following the flows of g1(·), g2(·),−g1(·),−g2(·), each one for time t, it is
well known that

y(4t) = ξ + t2[g1, g2](ξ) +O(t3),

where [g1, g2](x) = ∇g2(x)g1(x)−∇g1(x)g2(x). Let ∂S be of class C2 and assume

〈∇dS(ξ), [g1, g2](ξ)〉 ≤ −µ,

for ξ in a neighborhood Sδ of S, then dS(·) is of class C1,1 in Sδ \ S and so

dS(y(4t)) = dS(ξ) + 〈∇dS(ξ), y(4t)− ξ〉+O(‖y(4t)− ξ‖2)

= dS(ξ) + t2〈∇dS(ξ), [g1, g2](ξ)〉+O(t3) ≤ dS(ξ)− t2µ+O(t3) ≤ dS(ξ)− t2µ
2
.

Moreover, TS(x) can be proved to be 1
2 - Hölder continuous on Sδ.

If ∂S is not smooth, but S satisfies a ρ− internal sphere condition, then dS(·) is semicon-
cave with the semiconcavity constant 1

ρ in Sc, i.e for every x, y ∈ Sc

dS(y) ≤ dS(x) + 〈∂PdS(x), y − x〉+
1

ρ
‖y − x‖2 .
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The following theorem provides the conditions under which the system is small–time con-
trollable

Theorem 2.4 (Controllability) Let S be compact and let the following be valid

IS.1 let S be satisfying a ρ–internal sphere condition,

IS.2 there exist δ > 0, µ > 0, such that for every ξ ∈ Sδ \ S, there exists ζξ ∈ ∂PdS(ξ)
with the property:

〈ζξ, [g1, g2](ξ)〉 ≤ −µ < 0.

Then the minimum time function to reach S from ξ subject to the dynamics (2.1), TS(ξ)
is (finite and) Hölder continuous with exponent 1

2 on Sδ.

See e.g. [5], [6], [7].

3 A classical approach

We will formulate the Dynamic Programming Principle (DPP) for the minimum time
problem.

Theorem 3.1 (see [1]) (DPP) Under the standard assumptions, for x ∈ RS,

(3.1) inf
u∈Uad

{t+ TS(y(t, x, u)} = TS(x), for t ∈ [0, TS(x)].

A boundary value problem for the Hamilton–Jacobi–Bellman (HJB) equation associ-
ated with the minimum time function TS is as follows.

Theorem 3.2 (see [1]) Under the standard assumptions and STCS. Then TS is the unique
viscosity solution of 

supu∈U{−f(x, u)DTS} − 1 = 0 in RS \ S,
TS(x) = 0 on ∂S,

TS(x)→ +∞ as x→ x0 ∈ ∂RS .

Then, defining the Kružkov transform

vS(x) =

{
1− e−TS(x) x ∈ RS ,
1 x /∈ RS ,

vS(x) satisfies the dynamic programming principle

(3.2) vS(x) = inf
u∈Uad

{
∫ t

0
e−sds+ e−tvS(y(t, x, u))}
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for all t ∈ [0, TS(x)] and is the unique bounded viscosity solution of

(3.3)

{
vS(x) + supu∈U{−f(x, u)∇vS(x)} − 1 = 0 in Rn \ S
vS(x) = 0 on S.

Recover TS(x) = − log(1− vS(x)) and RS = {x ∈ Rn : vS(x) < 1}.
Given a fixed step h > 0 small enough, we approximate{

ẏ(t) = f(y(t), u(t)), t ∈ [0,+∞) a.e.

y(0) = ξ ∈ Rn,

by a one step (q + 1)-th order scheme which has the form

(3.4)

{
yn+1 = yn + hΦ(yn, An, h)

y0 = ξ

where An is an m × l matrix, An = (u1
n, ..., u

l
n) with uin ∈ U . Here l > 0 depends on the

specific method. We make the following assumptions on the scheme to preserve the order
of the method:

(A.1) For any x ∈ Rn and any measurable u : [0, h) → U there exists an m × l (where l
depends on the chosen method) matrix A ∈ U l such that

(3.5) ‖y(h, x, u)− yh(h, x,A)‖ ≤ Chq+2,

where C is a constant, q ≥ k, and y(h, x, u) stands for the exact solution of (1.1)
following the control u and yh(h, x,A) = x+ hΦ(x,A, h).

Conversely,

(A.2) for any matrix A ∈ U l, there exists a measurable control u : [0, h) → U such that
(3.5) holds.

For instance, if q = 0 or q = 1, we can simply take (3.4) as Euler or Heun ’s method,
respectively, i.e.

Φ(x, u, h) = f(x, u),

Φ(x, u1, u2, h) =
f(x, u1) + f(x+ hf(x, u1), u2)

2
,

We define the function

nh({Ai}, ξ) = min{n ∈ N : yn ∈ S} ≤ +∞,

Nh(ξ) = min
{Ai}∈U l

{nh({Ai}, ξ)}.

The discrete minimum time function is now defined by setting

Th(ξ) = hNh(ξ).
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For a given stepsize h > 0, define

vh(x) = 1− e−Th(x),

Recall that vh is the unique bounded solution of the following problem, see [2]:

(3.6)

{
vh(x) = infA∈U l{e−hvh(x+ hΦ(x,A, h))}+ 1− e−h on Rn \ S
vh(x) = 0 on S.

For the convergence of vh as well as Th, see [2].
For the fully discrete scheme, the idea is to use the first order interpolation, which described
briefly as follows. Let Γ = {xi,j : i, j = 1, ..., I} be a space grid for the domain Ω ⊂ Sδ.
Now we construct a fully discrete version of (3.6) by substituting vh(xi + hΦ(xi, A, h))
with

I[vh](xi + hΦ(xi, A, h)) =

I∑
j

λj(A)vh(xj),

if xi + hΦ(xi, A, h) =
∑I

j λj(A)xj , λj(A) ∈ [0, 1],
∑I

j=1 λj(A) = 1. More precisely,

Γ? := {x ∈ Γ : ∃A such that x+ hΦ(x,A, h) ∈ Ω}

and the fully discrete problem reads as

(3.7)


v∆x
h (x) = minA∈U l{e−hI[v∆x

h ](x+ hΦ(x,A, h))}+ 1− e−h if x ∈ Γ? \ S,
v∆x
h (x) = 0 if x ∈ Γ? ∩ S,
v∆x
h (x) = 1 if x ∈ Γ \ Γ?

v∆x
h (x) = I[v∆x

h ](x) if x ∈ Ω \ Γ.

Theorem 3.3 (see [4]) Assume that

TS(x) ≤ C k
√
dS(x), Th(x) ≤ C k

√
dS(x)

hold in a neighborhood Sδ of the target S, together with standard assumptions on the
scheme. Then there exist h̄ and C, C1, C2 > 0 such that

‖vS − vh‖∞,Ω ≤ Ch
q+1
k ,∥∥vS − v∆x

h

∥∥
∞,Ω ≤ C1h

q+1
k
−1 + C2

(∆x)1/k

h
.

for 0 < h ≤ h̄.
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3.1 Example

Consider the rocket car example ẍ = u, |u| ≤ 1. Here we used the third order Runge–Kutta
method.

Figure 1. The value function. Figure 2. Computed discrete trajectories

following discrete feedback controls

4 A new approach

Observe that the semi-discretization in time is a piecewise constant function with jumps
of size ≈ h since

TS(x) =

{
h for all x ∈ RS(h) \ S

0 on
o
S

Our goal is to reformulate the problem so that the jump size is reduced, at least, for some
classes of the control systems.

To this aim, instead of letting TS(x) be zero in
o
S, we do as in what follows. Consider

the reverse dynamics of (1.1)

(4.1)

{
ẏ−(t) = −f(y−(t), u(t))

y(0) = η ∈
o
S

.

We define the minimum time to S̄c by following some u ∈ Uad from η ∈
o
S

tSc(η, u) = min{t ≥ 0 : y−(t, η, u) ∈ S̄c} ≤ +∞.

Then the minimum time function to S̄c from η ∈
o
S is defined as

TSc(η) = inf
u∈Uad

{tSc(η, u)}.

We also define
RSc(t) = {η ∈ Rn : TSc(η) < t},
RSc = {η ∈ Rn : TSc(η) < +∞},
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the reachable sets w.r.t. S̄c .
Besides the standard assumptions imposed before, the followings are assumed to be

fulfilled from now on.

Assumptions 4.1

a) S is a compact set with C2 boundary,

b) (f, U), (−f, U) are small time controllable on S, S̄c respectively.
Moreover, assume TS(·), TSc(·) are locally Hölder continuous with exponent 1

k in
RS , RSc , k ∈ N \ {0}

For x ∈ RSc , consider the reverse dynamics (4.1) and the new target set as the closure
of the complement of the original target set S, S̄c. Due to the same arguments as above,
TSc(x) is the unique viscosity solution of

(4.2)


supu∈U{f(x, u)∇TSc(x)} − 1 = 0 in RSc \ S̄c

TSc(x) = 0 on ∂S̄c

TSc(x) = +∞ as x→ x0 ∈ ∂RS
c
.

Now we are going to redefine the minimum time function as

(4.3) T (x) =



TS(x) if x ∈ RS

0 if x ∈ ∂S
−TSc(x) if x ∈ RSc

+∞ if x→ x0 ∈ ∂RS

−∞ if x→ x0 ∈ ∂RS
c

and the value function as

(4.4) v(x) =


1− e−T (x) if x ∈ Rn \ S
0 if x ∈ ∂S
eT (x) − 1 if x ∈ Rn \ S̄c.

Then the minimum time problem is reformulated as T (x) is the unique viscosity solu-
tion of

(4.5)


supu∈U{−f(x, u)∇T (x)} − 1 = 0 in RS \ S or RSc \ S̄c

T (x) = 0 on ∂S

T (x) = +∞ as x→ x0 ∈ ∂RS

T (x) = −∞ as x→ x0 ∈ ∂RS
c
.

thus v(x) is the unique bounded viscosity solution of

(4.6)


v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in Sc

−v(x) + supu∈U{−f(x, u)∇v(x)} − 1 = 0 in
o
S

v(x) = 0 on ∂S,
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It is easy to see that T and v satisfy the dynamic programming principles (3.1) and
(3.2) whenever the optimal trajectories y on the right hand side of these principles stay
in Sc. Likewise, it is straightforward to see that (3.1) and (3.2) with y− in place of y hold
for −T and −v , respectively, whenever y− stays in S. However, it remains to be clarified
how these principles change for trajectories crossing ∂S.

Proposition 4.2 (Bridge DPP for T , see [8]) Under Assumptions 1.1 and 4.1, there exits
τ > 0 such that

T (x) = inf
α∈Uad

{t+ T (y(t, x, α))} for x ∈ RS(τ), 0 < TS(x) < t < τ,

T (x) = sup
α∈Uad

{−t+ T (y−(t, x, α))} for x ∈ RSc(τ), 0 < TSc(x) < t < τ.

Proposition 4.3 (BDPP for v, see [8])
Under Assumptions 1.1 and 4.1, there exists τ > 0 such that

v(x) = inf
α∈Uad

{
∫ t

0
e−sds+ e−T (x)v(y(t, x, α))} for x ∈ RS(τ), 0 < TS(x) < t < τ,

v(x) = sup
α∈Uad

{−
∫ t

0
e−sds+ e−T (x)v(y−(t, x, α))} for x ∈ RSc(τ), 0 < TSc(x) < t < τ.

We discretize the problem defined in the interior of S in the same way as it is of the
one defined exterior of S.

Consider the following problem as the discrete version of (4.6)

(4.7)


vh(x) = infA∈U l{e−hvh(x+ hΦ(x,A, h))}+ 1− e−h for x ∈ Sc

vh(x) = supA∈U l{e−hvh(x+ hΦ−(x,A, h))}+ e−h − 1 for x ∈
o
S

vh(x) = 0 for x ∈ ∂S.

Theorem 4.4 (Uniqueness, see [8]) The problem (4.7) admits a unique bounded solution
υ ∈ L∞(Rn). Moreover, ‖υ‖∞ ≤ 1.

The fully discrete problem of (4.6) reads as

(4.8)


v∆x
h (x) = infA∈U l{e−hI[v∆x

h ](x+ hΦ(x,A, h))}+ 1− e−h for x ∈ Γ ∩ Sc

v∆x
h (x) = supA∈U l{e−hI[v∆x

h ](x+ hΦ−(x,A, h))}+ e−h − 1 for x ∈ Γ ∩
o
S

v∆x
h (x) = 0 for x ∈ Γ ∩ ∂S.

Theorem 4.5 (Error estimate, see [8]) Under standard assumptions,

‖vh − v‖∞,Ω ≤ C1h
q+1
k
−1 + C2h,

Università di Padova – Dipartimento di Matematica 116



Seminario Dottorato 2014/15

∥∥v∆x
h − v

∥∥
∞,Ω ≤ C1

∆x
1
k

h
+ C2h

q+1
k
−1 + C3h,

where v, vh, v
∆x
h are solutions of (4.6), (4.7), (4.8) respectively and C1, C2, C3 are positive

constants.

5 Comparison via examples

5.1 Example 1

The first test we perform uses the simple one dimensional dynamics

(5.1) ẋ = u, u ∈ [−1, 1].

on Ω = [−1, 1] with target S = [−0.25, 0.25].
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Figure 3. Positive part of the value function obtained by the classical approach (left) and by

the proposed new one (right).

5.2 Example 2

The dynamics of the second example is

(5.2) ẋ1 = −x2 + x1 u, ẋ2 = x1 + x2 u, u ∈ [−1, 1].

It is easy to check that the Petrov condition holds for S, S̄c, thus TS , TSc are Lipschitz
continuous.

Figure 4. Value function on Ω obtained by the new

approach (radius of the target r = 0.25, h = 0.01,

∆x = 0.01, 3rd order Runge-Kutta scheme).

Figure 5. Value function on Ω\S obtained by the

new approach (radius of the target r = 0.25, h =

0.01, ∆x = 0.01, 3rd order Runge-Kutta scheme).
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Table 2: Comparison of error estimates for Example (5.2) (r = 0.5)

∆x h New approach Classical
approach

0.02 0.01 0.0089 0.0357

0.02 0.025 0.0059 0.0364

0.016 0.01 0.0077 0.0275

0.016 0.025 0.0068 0.0290
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An introduction to derived categories

Francesco Mattiello (∗)

Abstract. Derived categories were introduced in the sixties by Grothendieck and Verdier and have
proved to be of fundamental importance in Mathematics. Starting with a short review of the basic
language of category theory, we will first introduce the notion of abelian category with the help of
several examples. Then we will spend some time giving a thorough motivation for the construction
of the derived category of an abelian category.
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Introduction

Derived categories were introduced in the sixties by Grothendieck and Verdier in the study
of derived functors and spectral sequences.

Given an abelian category C, its derived category D(C) is obtained from the category
Ch(C) of (cochain) complexes in two stages. First one constructs a quotient K(C) of Ch(C)
by identifying chain homotopy equivalent morphisms between complexes. Such a quotient
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category K(C) is called the homotopy category of C. It is an additive category in which
the homotopy equivalences are invertible, but this advantage comes at a cost: K(C) is
not abelian anymore. Consequently, one has to look for an effective substitute for short
exact sequences, that should still have the property that it induces long exact sequences
on cohomology. The concept of a triangulated category with its “distinguished triangles”
provides a solution. It turns out that the homotopy category K(C) can be endowed with
the structure of a triangulated category. The second step consists in “localizing” K(C) by
inverting quasi-isomorphisms using a calculus of fractions. The goal is the following: we
want morphisms in K(C) which induce isomorphisms on cohomology to be invertible in the
category to be constructed. If we want a quasi-isomorphism to become an isomorphism,
it has to have an inverse. Unfortunately, there is no candidate for an inverse around. So
to define a derived category, we have to use a more elaborate process called localization
of categories.
This short note is organized as follows. In Section 1 we recall the basic language of
category theory; in Section 2, we introduce predictive, additive and abelian categories;
finally, in Section 3 we give a sketch of the construction of the derived category of an
abelian category.
The reader is referred to [1], [2], [3], [4], [5], [6], [7], [8].

1 The language of category theory

1.1 Categories

We recall that a category C consists of a class Ob(C) of objects, a set of morphisms
HomC(A, B) (often denoted by Hom(A, B)) for every ordered pair (A, B) of objects,
and a composition Hom(A, B)×Hom(B, C)→ Hom(A, C), denoted by (f, g) 7→ g f , for

every ordered triple A, B, C of objects. We often write f : A → B or A
f→ B instead of

f ∈ Hom(A, B). The following axioms must be satisfied:

(a) the Hom sets are pairwise disjoint, that is, each f ∈ Hom(A, B) has a unique domain
A and a unique target B;

(b) for each object A, there is an identity morphism 1A ∈ Hom(A, A) such that f 1A = f
and 1B f = f for all f : A→ B;

(c) composition is associative: given morphisms A
f //B

g //C
h //D , then h (g f) =

(h g) f .

There is a bijection between objects A and their identity morphisms 1A. Thus, we
may regard a category as consisting only of morphisms. In almost all uses of categories,
however, it is more natural to think of two sorts of entries: objects and morphisms.

If C is a category, its opposite category Cop is the category with Ob(Cop) = Ob(C),
with morphisms HomCop(A, B) = HomC(B, A) (we may write morphisms in Cop as fop,
where f is a morphism in C), and with composition the reverse of that in C; that is,

gop fop = (f g)op. We illustrate the composition in Cop: a diagram C
fop //B

gop //A in Cop
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corresponds to the diagram A
g //B

f //C in C. Any concept or statement about an
arbitrary category admits a dual concept or statement (the process of reversing arrows).

A category S is a subcategory of a category C if: Ob(S) ⊆ Ob(C); HomS(A, B) ⊆
HomC(A, B) for all A, B ∈ Ob(S); if f ∈ HomS(A, B) and g ∈ HomS(B, C), then the
composite g f ∈ HomS(A, C) is equal to the composite g f ∈ HomC(A, C); if A ∈ Ob(S),
then the identity 1A ∈ HomS(A, A) is equal to the identity 1A ∈ HomC(A, A).
A subcategory S of C is a full subcategory if, for all A, B ∈ Ob(S), we have HomS(A, B) =
HomC(A, B).

A morphism u : B → C in a category C is a monomorphism (or is monic) if u can be
canceled from the left; that is, for all objects A and all morphisms f, g : A→ B, we have
that u f = u g implies f = g.

A
f //
g
// B

u // C.

It is clear that u : B → C is monic if and only if , for all A, the map u∗ : Hom(A, B) →
Hom(A, C), u∗(f) = u f , is an injection.
A morphism v : B → C in a category C is an epimorphism (or is epic) if v can be canceled
from the right; that is for all objects D and all morphisms h, k : C → D, we have that
h v = k v implies h = k.

B
v // C

h //

k
// D.

It is clear that v : B → C is epic if and only if , for all D, the map v∗ : Hom(C, D) →
Hom(B, D), v∗(f) = f v, is an injection.
A morphism in a category C is a bijection if it is monic and epic.
We call a left inverse (respectively, a right inverse) of u ∈ Hom(A, B) a morphism
v ∈ Hom(B, A) such that v u = 1A (respectively u v = 1B); v is called the inverse of
u if it is both a left inverse and a right inverse of u (in which case it is uniquely deter-
mined). The morphism u is called an isomorphism if it has an inverse. If u has a left
inverse (respectively, a right inverse) it is monic (respectively epic). Thus an isomorphism
is bijective (the converse being, in general, false).
The composite of two monomorphisms (respectively, epimorphisms) is a monomorphism
(respectively, epimorphisms), hence the composite of two bijections is a bijection; simi-
larly the composite of two isomorphisms is an isomorphism. If the composite v u of two
morphisms u, v is a monomorphism (respectively, an epimorphism), then u (respectively,
v) is as well.

If B is an object in a category C, consider all ordered pairs (A, f), where f : A → B
is a monomorphism. Call two such pairs (A, f) and (A′, f ′) equivalent if there exists an
isomorphism g : A′ → A with f ′ = f g.

A
f // B

A′

g

OO

f ′

>>
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A subgadget of B is an equivalence class [(A, f)], and we call A a subobject of B. Note
that if (A′, f ′) and (A, f) are equivalent, then A′ ∼= A. There is also the dual notion
of quotient. If B is an object in a category C, consider all ordered pairs (f, C), where
f : B → C is a epimorphism. Call two such pairs (f, C) and (f ′, C ′) equivalent if there
exists an isomorphism g : C → C ′ with f ′ = g f . A quotient of B is an equivalence class
[(f, C)], and we call C a quotient object of B. Note that if (C ′, f ′) and (C, f) are equiv-
alent, then C ′ ∼= C.

Examples 1.1

(a) Sets. Objects are sets, morphisms are functions, and composition is the usual
composition of functions.

(b) Groups. Objects are groups, morphisms are group homomorphisms, and composi-
tion is the usual composition (homomorphisms are functions).

(c) R-Mod. If R is any ring (associative, with identity), the category of left R-modules
has as its objects all left R-modules, as morphisms all R-linear homomorphisms, and
as composition the usual composition of functions.

(d) Top. Objects are topological spaces, morphisms are continuous functions, and com-
position is the usual composition of functions.

(e) Htp. Objects are topological spaces, morphisms are homotopy classes of continuous
functions (thus, a morphism here is not a function but a certain equivalence class of
functions). Composition is defined by [f ][g] = [fg].

1.2 Products and coproducts

Let C be a category, and let (Ai)i∈I be a family of objects in C indexed by a set I.
A product is an ordered pair (

∏
i∈I Ai, (πi)i∈I), consisting of an object

∏
i∈I Ai and a

family πi :
∏
i∈I Ai → Ai of projections, satisfying the following universal property: for

every object X equipped with morphisms fi : X → Ai, there exists a unique morphism
θ : X →

∏
i∈I Ai making the following diagram commute for each i.

Ai

∏
i∈I Ai

πi

;;

X

fi

__

θoo

Note that the definition of
∏
i∈I Ai can be summarized by the formula

(1) Hom(X,
∏
i∈I

Ai) ∼=
∏
i∈I

Hom(X, Ai),

where the second product is taken in the category of abelian groups. If it exists, a product
is unique up to isomorphism, as a solution of a universal problem (cfr.).
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Here is the dual notion.
Let C be a category, and let (Ai)i∈I be a family of objects in C indexed by a set I. A
coproduct is an ordered pair (

∐
i∈I Ai, (αi)i∈I), consisting of an object

∐
i∈I Ai and a

family αi : Ai →
∐
i∈I Ai of injections, satisfying the following universal property: for

every object X equipped with morphisms fi : Ai → X, there exists a unique morphism
θ :
∐
i∈I Ai → X making the following diagram commute for each i.

Ai

αi{{

fi

��∐
i∈I Ai θ

// X

Note that the definition of
∐
i∈I Ai can be summarized by the formula

(2) Hom(
∐
i∈I

Ai, X) ∼=
∏
i∈I

Hom(Ai, X),

where the second product is taken in the category of abelian groups. If it exists, a coprod-
uct is unique up to isomorphism, as a solution of a universal problem

1.3 Functors

If C and D are categories, then a (covariant) functor T : C → D is a function such that

(a) if A ∈ Ob(C), then T (A) ∈ Ob(D);

(b) if f : A→ A′ in C, then T (f) : T (A)→ T (A′) in D;

(c) if A
f //A′

g //A′′ in C, then T (A)
T (f) //T (A′)

T (g) //T (A′′) in D and

T (g f) = T (g)T (f);

(d) T (1A) = 1T (A) for every A ∈ Ob(C).

We now recall an important example of functor. If C is a category and A ∈ Ob(C),
then the Hom functor TA : C → Sets, usually denoted by Hom(A, −), is defined by
TA(B) = Hom(A, B) for allB ∈ Ob(C), and if f : B → B′ in C, then TA(f) : Hom(A, B)→
Hom(A, B′) is given by TA(f) : h 7→ f h. We call TA(f) = Hom(A, f) the induced map,
and we denote it by f∗; thus, f∗ : h 7→ f h.

A controvariant functor T : C → D, where C and D are categories, is a function such
that

(a) if C ∈ Ob(C), then T (C) ∈ Ob(D);

(b) if f : C → C ′ in C, then T (f) : T (C ′)→ T (C) in D;

(c) if C
f //C ′

g //C ′′ in C, then T (C ′′)
T (g) //T (C ′)

T (f) //T (C) in D and

T (g f) = T (f)T (g);
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(d) T (1A) = 1T (A) for every A ∈ Ob(C).

It is clear that a controvariant functor T : C → D is the same thing as a (covariant)
functor T : Cop → D.
If C is a category and B ∈ Ob(C), then the controvariant Hom functor TB : C → Sets,
usually denoted by Hom(−, B), is defined by TB(C) = Hom(C, B) for all C ∈ Ob(C), and
if f : C → C ′ in C, then TB(f) : Hom(C ′, B)→ Hom(C, B) is given by TB(f) : h 7→ h f .
We call TB(f) = Hom(f, B) the induced map, and we denote it by f∗; thus, f∗ : h 7→ h f .

We similarly define functors of several variables (or multifunctors), covariant in some
variables and contravariant in others. In order to simplify, we will generally limit ourselves
to functors of one variable. Functors are composed in the same way as functions are, this
composition is associative and “identify functors” play the role of units.

A functor T : C → D, where C, D are categories, is faithful if for each A, B ∈ Ob(C),
the function HomC(A, B) → HomD(T (A), T (B)), given by f 7→ T (f), is an injection; T
is full if the function HomC(A, B)→ HomD(T (A), T (B)) is surjective.

Examples 1.2

(a) If C is a category, then the identity functor 1C : C → C is defined by 1C(A) = A for
all objects A and 1C(f) = f for all morphisms f .

(b) If S is a subcategory of a category C, then there is a canonical inclusion functor
ι : S → C.

(c) The forgetful functor F : Groups → Sets is defined as follows: F (G) is the under-
lying set of a group G and F (f) is a homomorphism f regarded as a mere function.

(d) If U is the topology of a topological space X then a presheaf of abelian groups over
X is a functor P : Uop → Ab. A sheaf is a presheaf satisfying certain axioms.
Presheaves and sheaves of abelian groups over X form categories: pSh(X, Ab) and
Sh(X, Ab).

1.4 Natural transformations

Let S, T : C → D be covariant functors. A natural transformation τ : S → T is a one-
parameter family of morphisms in D, τ = (τA : S(A)→ T (A))A∈Ob(C), making the follow-
ing diagram commute for all f : A→ A′ in C:

S(A)

S(f)
��

τA // T (A)

T (f)
��

S(A′) τA′
// T (A′).

Natural transformations between controvariant functors are defined similarly (replace C
by Cop). A natural isomorphism is a natural transformation τ for which each τA is an
isomorphism.
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Natural transformations can be composed. If τ : S → T and σ : T → U are natural
transformations, where S, T, U : C → D are functors, then define σ τ : S → U by (σ τ)A =
σA τA, for all A ∈ Ob(C). It is easy to check that σ τ is a natural transformation (Rotman,
Ex. 1.15).

For any functor S : C → D, define the identity natural transformation ωS : S → S by
setting (ωS)A : S(A) → S(A) to be the identity morphism 1S(A). The reader may check
that a natural transformation τ : S → T is a natural isomorphism if and only if there
exists a natural transformation σ : T → S with σ τ = ωS and τ σ = ωT .

A functor S : C → D is an equivalence if there exists a functor T : D → C and natural
isomorphisms T S → 1C , S T → 1D.
The following description of equivalence is often more closed at hand:

Proposition 1.3 A functor S : C → D is an equivalence if and only if it is full and
faithful, and every object of D is isomorphic to an object of the form S(C).

2 Abelian categories

2.1 Additive categories

An object A in a category C is called an initial object (respectively, a terminal object) if,
for every object X ∈ C, there exists a unique morphism A → X (respectively, X → A).
The reader may check that any two initial (respectively, terminal) objects in a category
C, should they exist, are isomorphic and that this isomorphism is unique. A zero object
is an object that is both an initial object and a terminal object. If A is a zero object
in a category C, then Hom(A, A) is reduced to 0, and for any B ∈ Ob(C), Hom(A, B)
(or Hom(B, A)) is reduced to 0. If A and A′ are zero objects, there exists a unique
isomorphism of A to A′ (that is, the unique zero element of Hom(A, A′)). We will identify
all zero objects of C to a single one, denoted 0 by abuse of notation.

A category C is preadditive if

(a) Hom(A, B) is an (additive) abelian group for every A, B ∈ Ob(C);

(b) the distributive laws hold: given morphisms

X
a // A

f //
g
// B

b // Y,

where X and Y ∈ Ob(C), then

b (f + g) = b f + b g and (f + g) a = f a+ g a.

A preadditive category C is additive if the following two additional conditions holds:

(c) C has a zero object;

(d) C has finite products and finite coproducts.
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The dual category of an additive category is still additive.
If C and D are additive categories, a functor T : C → D is additive if, for all A, B and all

f, g ∈ Hom(A, B), we have T (f + g) = T (f) + T (g); that is, the function HomC(A, B)→
HomD(T (A), T (B)), given by f 7→ T (f), is a homomorphism of abelian groups.
Clearly, if T is an additive functor, then T (0) = 0, where 0 is either a zero object or a zero
morphism.

In all additive categories, finite products and finite coproducts coincide:

Proposition 2.1 Let C be an additive category, and let M, A, B ∈ Ob(C). Then M ∼=
A u B if and only if there are morphisms i : A → M , j : B → M , p : M → A, and
q : M → B such that

p i = 1A, q j = 1B, p j = 0, q i = 0, and i p+ j q = 1M .

Moreover, A uB is also a coproduct with injections i and j, and so

A uB ∼= A tB.

Proof. See Stenstrom, Prop. 3.2, Ch. IV.

If A and B are objects in an additive category, then A u B ∼= A t B; their common
value, denoted by A⊕B, is called their direct sum (or biproduct).

The reader may check that, as a consequence of Proposition 2.1, if T is an additive
functor, T transforms a finite direct sum of objects Ai into the direct sum of T (Ai).

Let u, v : B → C be morphisms in an additive category C. For all objects A, D in C,
Hom(A, B) and Hom(C, D) are abelian groups, and so u is monic if and only if u g = 0
implies g = 0, for any morphism g : A → B in C; v is epic if and only if h v = 0 implies
h = 0, for any morphism h : C → D in C.

If u : A → B is a morphism in an additive category C, then its kernel Keru is a
morphism ι : K → A that satisfies the following universal mapping property: u ι = 0 and,
for every g : X → A with u g = 0, there exists a unique θ : X → K with i θ = g.

X

θ
�� g

  

0

''
K ι

// A u
// B

Any two kernels, should they exist, are isomorphic, as solutions of a universal problem.
There is a dual definition for cokernel, the morphism π in the following diagram:

A

0
''

u // B
h

  

π // C

θ
��
Y

Any two cokernels, should they exist, are isomorphic, as solutions of a universal problem.

Proposition 2.2 Let u : A→ B be a morphism in an additive category C.
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(a) If Keru exists, then u is monic if and only if Keru = 0.

(b) Dually, if Cokeru exists, then u is epic if and only if Cokeru = 0.

Proof. We refer to the diagrams in the definitions of kernel and cokernel. Let Keru be
ι : K → A, and assume that ι = 0. If g : X → A satisfies u g = 0, then the universal
property of kernel provides a morphism θ : X → K with g = ι θ = 0 (because ι = 0).

Hence, u is monic. Conversely, if u is monic, consider K
ι //

0
//A

u //B . Since u ι = 0 =

u 0, we have ι = 0. The proof for epimorphisms and cokernels is dual.

It is immediate to show that any kernel is monic and any cokernel is epic.
If ι is the kernel of some morphism and if Coker ι exists, then ι = Ker(Coker ι). Indeed,

let ι : K → A be the kernel of u : A→ B. Then u ι = 0 implies that u factors over Coker ι.
If now ξ : X → A is any morphism such that Coker ι ξ = 0, then it follows that u ξ = 0,
and ξ factors uniquely over Keru = ι. Therefore, ι is the kernel of Coker ι.

Let f : A→ B be a morphism in an additive category C, and assume that its cokernel
Coker f : B → C exists. Then its image is Im f = Ker(Coker f). In more suggestive

notation, Im(A
f→ B) = Ker(CokerA

f→ B). We denote Ker(Coker f) by Im f . Dually,
one defines the notion of coimage.

2.2 Abelian categories

An abelian category is an additive category C that satisfies the following two additional
conditions (which are self-dual):

(e) Any morphism admits a kernel and a cokernel;

(f) Let u be a morphism in C. Then the canonical morphism u : Coimu → Imu is an
isomorphism.

Let us show that given a morphism u : A → B in an additive category C, there is
a canonical morphism u : Coimu → Imu. Let u : A → B, then there is a canonical
factorization as indicated by the commutative diagram

Keru // A
u //

λ
��

B //

µ

��

Cokeru

Coimu
u
// Imu

where u is obtained as follows: (Cokeru)u = 0 implies that u factors as u = µα (by the
universal property of the kernel), for some α : A → Imu; then µα Keru = u Keru = 0
implies that αKeru = 0, since µ, being a kernel, is monic. Therefore, α factors as α = uλ
(by the universal property of the cokernel).

If C is an abelian category and B is a subcategory of C which is also abelian, then B is
said to be an abelian subcategory if the inclusion functor B → C is exact.
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If C is an abelian category, then the entire formalism of diagrams of homomorphisms
between abelian groups can be carried over if we replace homomorphisms by morphisms in
C, insofar as we are looking at properties of finite type, i.e. not involving infinite products
or coproducts. We content ourselves here with indicating a few particularly important
facts. Note that the axiom (6) is equivalent to the following one:

(6’) Every morphism u has a factorization as u = ιπ, where π is a cokernel and ι is a
kernel.

Indeed, it is obvious that (6) implies (6′). Conversely, let C be a category satisfying (1)-
(5) and (6’). If u factors as in (6’), then π = Coimπ = Coker(Kerπ) and ι = Im ι =
Ker(Coker ι). But Kerπ = Keru since ι is a monomorphism, and similarly Coker ι =
Cokeru. We conclude that Coker(Keru) = Ker(Cokeru), that is Coimu = Imu.

For the rest of this section we assume that C is abelian. The previous discussion shows:

Proposition 2.3 Let u be a morphism in C.

(a) If u is both a monomorphism and an epimorphism, then u is an isomorphism;

(b) If u is a monomorphism, then u = Ker(Cokeru);

(c) If u is a epimorphism, then u = Coker(Keru).

A sequence . . . //Ci−1
αi−1 //Ci

αi //Ci+1
αi+1 // // . . . is exact at Ci if Imαi−1 = Kerαi

(equals as subobjects of Ci). The whole sequence is exact if it is exact at each Ci.
Let T : C → C′ be a (covariant) functor, where C′ is an abelian category. We say that T

is left exact (respectively, right exact) if T transforms any exact sequence 0 //A //B //C
(respectively, A //B //C //0) into an exact sequence 0 //T (A) //T (B) //T (C)
(respectively, T (C) //T (B) //T (A) //0). T is called an exact functor if it is both
left exact and right exact; that is, T transforms any short exact sequence 0 //A //B //C //0
into an exact sequence 0 //T (A) //T (B) //T (C) //0. If T is a controvariant
functor, we say that T is left exact (respectively, right exact) if T has the corresponding
property as a covariant functor Cop → C′.
The composite of left exact, right exact, exact covariant functors is of the same type.
As a significant example, we note that Hom(−, −) is an additive bifunctor on Cop×C, with
values in Ab, controvariant in the first argument and covariant in the second argument,
and left exact with respect to each argument.

Let C ∈ Ob(C), (Ci)i∈I a family of subobjects of C, and assume that the coproduct∐
i∈I Ci exists. The monomorphisms Ci → C induce a morphism α :

∐
i∈I Ci → C. The

image of α is called the sum of the subobjects Ci and it is denoted by
∑

i∈I Ci. If α is
a monomorphism, then it induces an isomorphism

∐
i∈I Ci

∼=
∑

i∈I Ci, and in this case
the sum is called direct sum. Dually, the epimorphisms C → C/Ci induce a morphism
β : C →

∏
i∈I C/Ci (when the product exists). The kernel of β is the intersection of the

subobjects Ci and it is denoted by
⋂
i∈I Ci.
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Examples 2.4

(a) R-Mod is abelian, for any ring R. In fact, it can be shown that any small abelian
category is equivalent to a full subcategory of such a category of modules (Mitchell’s
embedding theorem). In particular:

(b) Ab is abelian.

(c) Groups is not abelian, as it is not additive.

(d) The full subcategory of Ab of all finitely generated abelian groups is an abelian
category, as is the full subcategory of all torsion abelian groups.

(e) The full subcategory of Ab of all torsion-free abelian groups is not an abelian cate-
gory, for there are morphisms having no cokernel; for example, the inclusion 2Z→ Z
has cokernel Z/2Z, which is not torsion-free.

(f) pSh(X, Ab) and Sh(X, Ab) are abelian categories. More generally, if C is an
abelian category, then pSh(X, C) and Sh(X, C) are abelian.

(g) If C is abelian, then its opposite category Cop is abelian. So, a theorem using only
the axioms in its proof is true in every abelian category; moreover, its dual is also a
theorem in every abelian category, and its proof is dual to the original proof.

3 Derived categories

3.1 The category of cochain complexes and the homotopy category

In this section we let C be an additive category. A complex X• = (Xk, dkX) over C is a
sequence of objects Xk and morphisms dkX : Xk → Xk+1 (k ∈ Z):

. . . // Xk−1
dk−1
X // Xk

dkX // Xk+1 // . . .

such that dk+1
X dkX = 0 for all k ∈ Z. A complex is bounded below if Xk = 0 for all but

finitely many k < 0. It is bounded above if Xk = 0 for all but finitely many k > 0. It
is bounded if it is bounded below and bounded above. We denote by Ch(C) the additive
category of complexes and by Ch∗(C) (∗ = b, +, −) the full additive subcategory of Ch(C)
consisting of bounded complexes (resp. bounded below, bounded above). We may consider
C as a full subcategory of Chb(C) by identifying each object X of C with the complex
. . . //0 //X //0 // . . . “concentrated in degree 0”, where X stands in degree 0.

Let X ∈ Ob(Ch(C)) and p ∈ Z. The shift functor is defined by

(X[p])n = Xn+p, dnX[p] = (−1)pdn+p
X

and if f : X → Y is a morphism in Ch(C), then

(f [p])n = fn+p.
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The shift functor [1] : Ch(C)→ Ch(C), X 7→ X[1] is an automorphism (that is, an invert-
ible functor) of Ch(C).

The mapping cone of a morphism f : X → Y in Ch(C) is the complex (Mc(f), dMc(f)),

where (Mc(f))k = (X[1])k⊕Y k and dkMc(f) =

(
dkX[1] 0

fk+1 dkY

)
. There are natural morphisms

of complexes α(f) : Y →Mc(f), β(f) : Mc(f)→ X[1] and β(f)α(f) = 0.
A morphism f : X → Y in Ch(C) is said to be homotopic to zero if for all p ∈ Z

there exists a morphism sp : Xp → Y p such that fp = sp+1dpx + dp−1
Y sp. Two morphisms

f, g : X → Y are homotopic if the morphism f − g : X → Y is homotopic to zero. A
complex X is homotopic to 0 if the identity morphism 1X is homotopic to zero.

Let X, Y be two complexes and define

Ht(X, Y ) = {f : X → Y | f is homotopic to zero} .

If f : X → Y and g : Y → Z are morphisms in Ch(C) and if f or g is homotopic to zero, then
gf : X → Z is homotopic to zero. This allow us to define a new category, the homotopy
category K(C), in which the objects are complexes over C, and for all X, Y ∈ Ob(K(C)),
HomK(C)(X, Y ) = HomCh(C)(X, Y )/Ht(x, Y ). In other words, a morphism homotopic to
zero in Ch(C) becomes the zero morphism in K(C) and a homotopy equivalence in Ch(C)
becomes an isomorphism in K(C). Similarly, we define K∗(C) for ∗ = b, +, −. These
categories are clearly additive, but in general not abelian.

3.1.1 Complexes in abelian categories

In this section C denotes an abelian category. One easily proves that that the categories
Ch∗(C) are abelian categories. Let X ∈ Ob(Ch(C)). We define the following objects of C:

Zn(X) = Ker dnX , Bn(X) = Im dn−1
X .

Note that there is a natural morphism Bn(X) → Zn(X), so we can define the n-th
cohomology object of X:

Hn(X) = Zn(X)/Bn(X).

If f : X → Y is a morphism in Ch(C), then it induces morphisms Zn(X) → Zn(Y ) and
Bn(X) → Bn(Y ), hence a morphism Hn(X) → Hn(Y ). Therefore, we have an additive
functor Hn : Ch(C) → C. This functor can be extended to a functor Hn : K(C) → C.
A morphism f : X → Y in Ch(C) is said to be a quasi-isomorphism (for short, a qis) if
Hk(f) : Hk(X)→ Hk(Y ) is an isomorphism for all k ∈ Z. In this case we say that X and
Y are quasi-isomorphic. Clearly, a complex X is exact if and only if it is quasi-isomorphic
to zero.

Examples 3.1

(a) Let R = Z. The morphism of complexes of abelian groups:

· · · // 0 //

0
��

Z 4·− //

0
��

Z //

proj
��

0 //

0
��

· · ·

· · · // 0 // 0 // Z/4Z // 0 // · · ·
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is a quasi-isomorphism in C(Z). More generally:

(b) Any left R-module X can be considered as a complex · · · → 0→ 0→ X → 0→ 0→
· · · (with X placed in degree zero). This complex has cohomology 0 outside zero,
and its 0-th cohomology is isomorphic to X. Any projective resolution P • → X of
the module X gives a quasi-isomorphism:

· · · // P 2 //

0
��

P 1 //

0
��

P 0 //

��

0 //

0
��

· · ·

· · · // 0 // 0 // X // 0 // · · ·

3.2 The derived category

Theorem 3.2 Let C be an abelian category. There exists a triangulated category D∗(C)
(∗ = ub, b, +, −), called the derived category of C, and a functor Q : K∗(C) → D∗(C)
such that:

(a) Q(s) is an isomorphism in whenever s is a quasi-isomorphism;

(b) for any functor F : C → A such that F (s) is an isomorphism whenever s is a quasi-
isomorphism, there exists a functor F̃ : D∗(C)→ A and a natural isomorphism F '
F̃ ◦Q;

(c) if G1, G2 : C → A are functors, then the natural map

Hom(G1, G2)→ Hom(G1 ◦Q, G2 ◦Q)

is a bijection.

Proof. Sketch: we denote by Σ the class of all quasi-isomorphisms of the category Ch(C).
We construct the derived category D(C) of C in two steps.

(a) First we take the homotopy category K(C) of C. The category K(C) comes with a
canonical functor Q′ : C(C)→ K(C).

(b) In the second step, the morphisms from Q′(Σ) are made invertible. That is, we
construct D(C) as:

D(C) = K(C)[Σ−1]

Similar constructions for D∗(C) (∗ =b, +, −).
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Condition (c) means that the functor − ◦ Q : Fun(D∗(C),A) → Fun(C,A) is fully
faithful. This implies that the functor F̃ in (b) is unique up to unique isomorphism.
The objects in D∗(C) are the objects in K∗(C).

A morphism f : X → Y in D∗(C) is an equivalence class of triplets (Y ′, t, f ′), with
t : Y → Y ′ a qis and f ′ : X → Y ′:

X
f ′ // Y ′ Y

too ,

and the equivalence relation is defined as follows: (Y ′, t, f ′) ∼ (Y ′′, t′, f ′′) if and only if
there exists (Y ′′′, t′′, f ′′′) (t, t′, t′′ quasi-isomorphisms) and a commutative diagram:

Y ′

��
X

f ′
77

f ′′′ //

f ′′ ''

Y ′′′ Y.
t′′oo

t′}}

t

aa

Y ′′

OO

The composition of two morphisms (Y ′, t, f ′) : X → Y and (Z ′, s, g′) : Y → Z is defined
by the diagram below with t, s, s′ quasi-isomorphisms :

X
f ′
// Y ′

h   

Y
t

oo
g′
// Z ′

s′~~

Z.s
oo

W

The functor Q : C → D∗(C) is given by Q(X) = X, for all X ∈ Ob(C), Q(f) = (Y, 1Y , f) =

X
f //Y Y

1Yoo , for all f ∈ HomC(X, Y ). Note that for a morphism f = (Y ′, t, f ′)
in D∗(C) we have

f = Q(t)−1Q(f ′).

Moreover, for two parallel morphisms f, g : X → Y we have the equivalence

Q(f) = Q(g)⇐⇒ there exists a qis s : Y → Y ′ such that sf = sg.
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Why should people in

approximation theory care

about (pluri-)potential Theory?

Federico Piazzon (∗)

Abstract. We give a summary of results in (pluri-)potential theory that naturally come into play
when considering classical approximation theory issues both in one and (very concisely) in several
complex variables. We focus on Fekete points and the asymptotic of orthonormal polynomials for
certain L2 counterpart of Fekete measures.

1 One variable case

1.1 Interpolation and Fekete Points

Let K ⊂ C be a compact set such that C∞\K is connected and f : K → C be a continuous
function that is holomorphic in the interior of K, then Mergelyan Theorem ensures the
existence of sequences of polynomials uniformly approximating f on K.

Two reasonable questions are whether we can compute such a sequence by interpolation
or not, and how the interpolation nodes should be chosen. It turns out that these questions
become much more difficult when suitably translated in the several variables context.

From here on we suppose K to be a polynomial determining set, that is if a polynomial
vanish on K then it is the zero polynomial. If we consider the monomial basis {zj}j=1,2,...,k

for the space Pk of polynomials of degree at most k and we pick k+1 distinct points zk :=
(z0, z1, . . . , zk) ∈ Kk+1 the interpolation problem can be written as V DMk(z0, . . . , zk)c =
(f(z0), . . . , f(zk))

t where c ∈ Ck+1 and

VDM
k

(z0, . . . , zk) := [zji ]i,j=0,...,k

is the Vandermonde Matrix. Notice that for each k+1-tuple of distinct points det VDMk(zk) 6=
0 so the problem is well posed.

(∗)Ph.D. course, Università di Padova, Dip. Matematica, via Trieste 63, I-35121 Padova, Italy; E-mail:
. Seminar held on June 24th, 2015.
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It is a classical result that the norm of the operator Ik : (C (K), ‖ · ‖K)→
(
Pk, ‖ · ‖K

)
is the Lebesgue Constant Λk := maxz∈K

∑k
m=0 |lm,k(z)|, where lm,k(z) :=

det VDMk(z0,...,zl−1,zl,...,zk)
det VDMk(z0,...,zk) .

Minimizing Λk(zk) is an extremely hard task so one can consider the simplified problem
of maximizing |det VDM(zk)|, though it is still a very hard one.

Definition 1.1 (Fekete Points) Let K ⊂ C be a compact set and zk := (z0, . . . , zk) ∈
Kk+1. If we have |det VDMk(zk)| = maxζ∈Kk+1 | det VDMk(ζ)|, then zk is said to be a
Fekete array of order k, its elements are said Fekete points.

The relevance of Fekete points is easy to see: one has Λk(F k) ≤ k + 1 for any Fekete
array F k; moreover notice that in general F k is not unique.

An interesting property of Vandermonde determinants is that for any array of points
zk we have

|det VDM
k

(zk)| =
∏
i<j≤k

|zi − zj |

that is the product of their distances; this is one of the main points in connecting
interpolation with logarithmic potential theory. We introduce the number dk(K) :=

|VDMk(zk)|1/(
k
2) for one (thus any) Fekete array zk of order k. In analogy with the

case k = 0, dk(K) is called k-th diameter of K, it is a decreasing positive sequence, its
limit d(K) is called transfinite diameter of K.

Example 1.2 (Fekete points on the unit disc) Let D be the unit circle. Take any set
of distinct points z = {z0, . . . , zk} and consider the determinant of the matrix V (z) :=
VDMk(z). We have

‖V:,j(z)‖2 =

∥∥∥∥∥∥∥∥∥


zj0
zj1
...

zjk


∥∥∥∥∥∥∥∥∥

2

=
√
k + 1, for any j = 0, 1, . . . k.

Therefore Hadamard Inequality for determinants implies | det VDMk(z)| ≤
∏k
j=0 ‖V:,j(z)‖2 =

(k+ 1)
k+1
2 . This upper bound is achieved if and only if the columns of V (z) are orthonor-

mal and this condition is satisfied for z a set of k+1 roots of unity. Therefore {2iπj
k+1}j=0,...,k

is a Fekete set for D.

1.2 Logarithmic Potential Theory

It is customary to introduce the differential operators d := ∂ + ∂̄ and dc := i(∂̄ − ∂) such
that (passing to real coordinates) one has ∆ = 2i∂∂̄ = ddc.

We recall that using the Green Identity it is possible to show that E(z) := 1
2π log |z| is

a fundamental solution for the Laplacian, i.e., ddcE(z) = δ0 in the sense of distributions.
We also recall that a real valued function u ∈ C 2 on a domain Ω is said to be harmonic
if ∆u = 0 in Ω. A upper semi-continuous function v is said to be subharmonic in Ω if for
any open relatively compact subset Ω1 ⊂ Ω and any harmonic function u on Ω such that
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v ≤ u on ∂Ω1 we have v ≤ u on Ω1. It follows that, given any compactly supported finite
Borel measure µ, the function

Uµ(z) := µ ∗ E(z) =

∫
log

1

|z − ζ|
dµ(ζ),

said the logarithmic potential of µ, is a superharmonic function (i.e. −Uµ is subharmonic)
on C and in particular harmonic in C \ suppµ, moreover we have ddc Uµ = µ.

To the Laplace operator is naturally attached an energy minimization problem; we
refer the reader to [21], [23] and [22] for details.

Problem 1.1 (Logarithmic Energy Minimization) Let K be a compact subset of C, min-
imize

(LEM) I[µ] :=

∫ ∫
log

1

|z − ζ|
dµ(ζ)dµ(z) =

∫
Uµ(z)dµ(z),

among µ ∈ M1(K), the set of Borel probability measures on K endowed with the weak∗

topology.

We notice that if we consider the electrostatic interaction between k+1 unitary charges

in the plan, the force acting on the i-th particle is
∑

j 6=i
(xi,xj ,yi−yj)
|zi−zj |2 = −∇Uµ, where µ

denotes the uniform probability measure associated to the charges distribution. The elec-
trostatic energy associated to this charges distribution is precisely Ũµ =

∑
i 6=j
∑

log 1
|zi−zj | ,

this minimization problem is very close to (LEM), we will see that in particular (LEM)
is, in a suitable sense, its limit.

It turns out that I[·] is a lower semi-continuous functional on a locally compact space,
one can use the Direct Methods of Calculus of Variation to prove that two situations may
occur. Either I[µ] = +∞ for all µ ∈ M1(K), either there exists a unique minimizer that
is the equilibrium measure of K and is usually denoted by µK .

In the latter case one has UµK (z) = − log c(K) − gK(z), where gK := GC∞\K is the
generalized (e.g. possibly not continuous) Green function with logarithmic pole at ∞ for
the complement of K. The number c(K) called logarithmic capacity of K and is defined as
c(K) := exp(− infµ∈M1(K) I[µ]), thus is non zero precisely when the minimization problem
is well posed. It turns out that UµK (z) = − log c(K) quasi everywhere on K, that is for
any z ∈ K but for set of zero logarithmic capacity.

Sets of zero capacity are, roughly speaking, too small for logarithmic potential theory,
they are termed polar and it can been shown that c(K) = 0 if and only if K is the −∞
set of some subharmonic function defined in a neighbourhood of K.

The following result is due to Szego, Leja and Fekete.

Theorem 1.3 (Fundamental Theorem of Logarithmic Potential Theory) Let K ⊂ C be a
compact non polar set, we have

c(K) = d(K).

Therefore, for any sequence of Fekete arrays {F k}, setting µk := 1
k+1

∑k
j=0 δF jk

, we have

µk⇀
* µK .
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Moreover locally uniformly on C \K we have

lim
k
−Uµk(z) := lim

k

1

k + 1
log

k+1∏
j=0

|z − F jk | = gK(z)− log c(K) = −UµK .

The proof is based on lower semi-continuity and strict convexity of the energy func-
tional and on the extremal property of Fekete points. Moreover the result holds true
for any sequence of so called asymptotically Fekete arrays that is, arrays Lk such that

limk |VDMk(Lk)|1/(
n
2) = d(K).

1.3 Back to Approximation

Other deep connections between interpolation and logarithmic potential theory are given
by the following two results. We recall that a compact set K is said to be regular if gK is
a continuous function.

Theorem 1.4 (Bernstein Walsh [25]) Let K be a compact polynomially determining non
polar set, then we have

gK(z) = lim sup
ζ→z

({
1

deg p
log+ |p(ζ)|, ‖p‖K ≤ 1

})
.

Moreover

(Bernstein Wals Ineq.) |p(z)| ≤ ‖p‖K exp(deg p gK(z)) ∀p ∈P(C).

The approximation theorem comes as an application of Hermite reminder formula and
the previous theorem.

Theorem 1.5 (Bernstein-Walsh [25]) Let K ⊂ C be a compact regular polynomially convex
non polar set and f : K → C be a bounded function. Let dk(f,K) := inf{‖f − p‖K : p ∈
Pk}, then for any real number R > 1 the following are equivalent

(1) limk dk(f,K)1/k < 1/R

(2) f is the restriction to K of f̃ ∈ hol(DR), where DR := {gK < logR}.

1.4 L2 theory

We want to show that some analogues of results for Fekete points (that are L∞ maximizers,
in some sense) holds for particular measures in a L2 fashion.

Definition 1.6 (Bernstein Markov Measures) Let K ⊂ C be a compact set and µ be a
Borel measure such that suppµ ⊆ K, assume that

lim sup
k

(
‖pk‖K
‖pk‖L2

µ

)1/deg(pk)

≤ 1,
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for any sequence of non zero polynomials {pk}. Then we say that (K,µ) has the Bernstein
Markov property, BMP for short, or equivalently µ is a Bernstein Markov measure on K.

Example 1.7 We claim that dµ := 1
2πdθ is a Bernstein Markov measure for S1. To show

that, one first notice that the monomials (up to degree k) are a orthonormal basis of(
Pk, 〈·; ·〉L2

µ

)
. Therefore, for any p ∈Pk we have

|p(z)| =

∣∣∣∣∣∣
k∑
j=0

〈p; zj〉L2
µ
zj

∣∣∣∣∣∣ ≤ ‖p‖L2
µ

 k∑
j=0

|zj |2
1/2

≤
√
k + 1‖p‖L2

µ
,

hence lim supk

(
‖pk‖K
‖pk‖L2

µ

)1/ deg(pk)

≤ lim supk(k + 1)1/2k = 1.

Bernstein Markov measures on a given K are in general a very large set as the following
sufficient condition shows. For a exhaustive treatment of regular measures (e.g. a weakened
version of Bernstein Markov property) the reader is referred to [24]; generalization to the
Cn version can be found in [5]. A survey with further development is [10].

Theorem 1.8 (Sufficient condition for BMP [24]) Let K be a compact non polar regular
set and µ a Borel measure such that suppµ = K, assume that there exists a positive
number t > 0 such that

(1) lim
r→0+

c
(
{z ∈ K : µ(B(z, r)) ≥ rt}

)
= c(K).

Then (K,µ) satisfies the Bernstein Markov property.

Finding necessary condition is a relevant open question in the general theory of or-
thogonal polynomials, a necessary condition was stated as a conjecture by Erdös.

The first interest on BMP is from the approximation point of view. Let us take a
orthonormal system {qj}j=0,1,... for P, then each Pk is a Reproducing Kernel Hilbert

Space, being Kµ
k (z, ζ) :=

∑k
j=0 qj(z)q̄j(ζ) the kernel. We denote by Bµ

k (z) the diagonal of

the kernel, say the Bergman Function Bµ
k (z) = Kµ

k (z, z) =
∑k

j=0 |qj(z)|2. It is not hard
to see that the Bergman function represent the worst possible case for the l.h.s. of the

definition of BMP, that is supdeg p≤k
‖p‖K
‖p‖

L2
µ

=
√
‖Bµ

k ‖K .

We consider natural the projection operator Lµk :
(
C 0(K), ‖ · ‖K

)
→
(
Pk, ‖ · ‖K

)
defined by embedding the two spaces in L2

µ, L
µ
k [f ](z) :=

∑k
j=0〈f, qj〉qj(z). It follows that

‖Lµk [f ]‖K ≤

 k∑
j=0

|〈f, qj〉|2
1/2

∥∥∥∥∥∥∥
 k∑
j=0

|qj(z)|2
1/2

∥∥∥∥∥∥∥
K

≤ ‖f‖L2
µ

√
‖Bµ

k (z)‖K ≤ ‖f‖K
√
µ(K)‖Bµ

k (z)‖K .
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Therefore we have ‖Lµk‖ ≤
√
µ(K)‖Bµ

k (z)‖K . This can be used to bound the error of poly-

nomial approximation by least square projection, let pk be the best uniform polynomial
approximation of degree at most k to f

‖f − Lµk [f ]‖K = ‖f − pk + pk − Lµk [f ]‖K

≤ dk(f,K) + ‖Lµk [f − pk]‖K ≤ dk(f,K)

(
1 +

√
µ(K)‖Bµ

k (z)‖K
)
.

This allows us to state a version of the Bernstein Walsh Lemma in a L2 fashion for
Bernstein Markov measures.

Theorem 1.9 (Bernstein Walsh L2 version [17]) Let K be a compact polynomially convex
regular non polar set and µ a Borel probability measure such that suppµ = K satisfying
the Bernstein Markov property. Then the following are equivalent.

(1) limk dk(f, µ)1/k < 1/R

(2) f is the restriction to K of f̃ ∈ hol(DR), where DR := {gK < logR}.

Here limk dk(f, µ) is the error of best L2
µ polynomial approximation to f of degree not

greater than k.
There are other interesting analogies between BM measures and measures associated

to Fekete points. First we notice that if we pick a Fekete array Fk for K and we compute
the squares of the modulus of the Vandermonde determinant on such points we can rewrite
it as a L2 norm w.r.t. the associated Fekete measure µk, that is
(2)

(k(k+1))!| det VDM(Fk)|2 =

∫
. . .

∫
| det VDM(ζ0, . . . , ζk)|2dµk(ζ0) . . . dµk(ζk) := Zk(µk),

notice that the right hand side can be generalized to any measure on E. On the other
hand if we perform the Gram-Schmidt ortogonalization of the Vandrmonde matrix one
the right hand side of (2) we obtain (up to a normalizing constant (k(k+1))!) the product
of L2

µ norms of the monic orthonormal polynomials relative to µ and this is precisely the

determinant of the Gram-matrix Gµkk w.r.t.
(
Pk, ‖ · ‖L2

µk

)
in the standard basis, that is

Gµkk = [〈ziz̄j〉L2
µk

]i,j .

This observation leads to a generalization of asymptotically Fekete points to any mea-
sure, namely µ ∈M1(E) is asymptotically Fekete for E if limk Zk(µ,E)1/(k(k+1)) = d(E).

The following result, despite a not very difficult proof is fundamental, especially in
more general contexts: Bernstein Markov measures are asymptotically Fekete; see [8, 6].

Proposition 1.1 Let K be a compact non polar set and µ a Borel probability measure
such that suppµ ⊂ K satisfying the Bernstein Markov property. We have

lim
k

(∫
. . .

∫
| det VDM(ζ0, . . . , ζk)|2dµ(ζ0) . . . dµ(ζk)

) 1
k(k+1)

= lim
k

[
(k(k + 1))! detGµk

] 1
k(k+1) = d(K).
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Morally speaking, Fekete points are L∞ maximizers, while BM measures are L2 max-
imizers.

Also we have that other interesting properties of Fekete points can be translated in
this fashion.

Theorem 1.10 Let K be a compact non polar set and µ a Borel probability measure such
that suppµ ⊂ K satisfying the Bernstein Markov property. We have

i) limk
1

2k(k+1) logBµ
k (z) = gK(z) point-wise, locally uniformly if K is regular.

ii) limk
Bµk

k(k+1)µ = µK in the weak∗ sense.

Notice that for Fekete measures Bµk
k is the sum of the squared modulus of Lagrange

polynomials and
B
µk
k

k(k+1) ≡ 1 on the support of µk.
There are other applications of Bernstein Markov measures and potential theory tools

concerning for instance random polynomials ensambles generalizing the classical result on
Kac polynomials and asymptotic of zeroes of orthogonal polynomials; see for instance [11],
[5], [9].

2 Several Variables Case

The extension of what we saw in the case of one complex variable is much more difficult
and technical, but still the most of the relation in the previous section have their scv
counterpart, provided a correct ”translation”.

The first difficulty is in defining the n-dimensional transfinite diameter for a given
compact set, in particular showing the existence of the limit and its independence by the
ordering of the monomial basis. The solution has been given by Zaharjuta [26] by a so-
phisticate procedure comparing the k-th diameter with certain integral mean of directional
Chebyshev constants.

The second problem is that logarithmic energy is not related to maximization of Van-
dermonde determinants when n > 1. As a consequence, subharmonic functions are no
more the ”correct space” to look at; they are replaced in this context by plurisubharmonic
ones.

Plurisubharmonic functions, PSH for short, are upper semi continuous functions being
subharmonic along each complex line. This property is invariant under any holomorphic
mapping, moreover there is a differential operator (the complex Monge Ampere) playing
a role with PSH function similar to the one of Laplacian with respect to subharmonic
functions in C.

Let u ∈ PSH(Cn) ∩ C 2, then one can consider the continuous (1, 1) form ddc u,

ddc u :=
n∑
i=1

2i
∂2

∂zi∂z̄j
u(z)dzi ∧ dz̄j
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and then take the wedge powers of it

(ddc u)n := ddc u ∧ · · · ∧ ddc u = det[
∂2

∂zi∂z̄j
u(z)]i,jdVn,

where dVn is the standard volume form on Cn.
It is a classical result that ddc u can be defined as a positive current (i.e., an element of

the dual of test forms) for any PSH function and, due to the seminal works of Bedford and
Taylor [1] [2], for locally bounded PSH function the operator (ddc u)n is well defined as a
positive Borel measure. This extension is termed the generalized complex Monge Ampere
operator, Pluripotential Theory is the study of plurisubharmonic functions and Monge
Ampere operator; we refer the reader to [15] for a detailed treatment of the subject.

In this context the role of Harmonic function is replaced by maximal plurisubharmonic
functions that are defined requiring precisely the domination property that harmonic
functions enjoy with respect to subharmonic functions in C; they are characterized by
(ddc u)n = 0 in the sense of measures on the given domain. We denote by L(Cn) the class
of plurisubharmonic functions with logarithmic pole at infinity, the Dirichlet problem for
the Monge Ampere operator{

(ddc u)n = 0 in Cn \K
u =q.e. 0 on K,u ∈ L(Cn) ∩ L∞loc

enjoys the role of the Dirichlet problem for the Laplacian in C, its solution V ∗K is called
plurisubharmonic extremal function or, by analogy, pluricomplex Green function. Being
V ∗K representable, precisely as gK , with the (upper-semicontinuous regularization of the)
upper envelope of function v in L(Cn) such that v ≤ 0 on K.

V ∗K(z) := lim sup
ζ→z

VK(ζ)

VK(ζ) := sup{u(ζ), u ∈ L(Cn), u|K ≤ 1}.

Again, as in the one dimension, one has ∆gK = µK here one has a pluripotential equilibrium
measure µK := (ddc V ∗K)n, thus it is supported on K by definition.

Pluripotential theory has analogies with potential theory but also differences, first the
Monge Ampere operator if fully non linear, there is no notion of potential, a suitable
energy functional has been found only recently and there is no direct connection between
polynomials and finitely supported measures. However there are plenty of good news as
well.

First, the (Bernstein Wals Ineq.) goes precisely to Cn replacing gK by V ∗K , due to
that and a density result one has the scv counterpart (again replacing gK by V ∗K) of the
Bernstein Walsh Lemma 1.4, usually referred as the Bernstein Walsh Siciak Theorem.

For years the extension of the asymptotic property of Fekete points to Cn has been only
conjectured. The work (see [4], [3]) of Berman Boucksom and Nymstrom finally proved
that, despite the strong differences between potential and pluripotential theory, one has
the same L∞ and L2 asymptotic results. More precisely, for a non pluri-polar (i.e., not
contained in the −∞ set of a plurisubharmonic function) compact set K the following
holds.
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(a) Fekete measures for K converge weakly∗ to µK .

(b) The same remains true for any sequence of asymptotically Fekete arrays.

(c) For any Bernstein Markov measure µ limk
Bµk

dim Pk(Cn)
µ = µK .

(d) For any Bernstein Markov measure µ limk
1
2k logBµ

k = V ∗K locally uniformly if K is
L-regular, e.g. V ∗K is continuous.

Moreover, the sufficient condition for the Bernstein Markov property can be translated
to Cn by replacing the logarithmic capacity by a non linear ”local” (e.g., relative to a
open hold all set) capacity associated with the Monge Ampere operator, say the relative
capacity ; see [7].

3 A discrete approach

Admissible meshes, shortly AM, are sequences {Ak} of finite subsets of a given compact
set K such that

• there exists a positive real constant C such that for any p ∈Pk we have

max
K
|p| ≤ C max

Ak
|p|.

• CardAk increase at most polynomially.

They have been first introduced [14] as good sampling sets for uniform polynomial ap-
proximation by discrete least squares. The construction of such subsets has been studied
for several cases, with emphasis in holding the cardinality growth rate; see for instances
[12, 18, 20, 16].

Let associate the uniform probability measure µk to Ak, then we can see that, picking
an orthonormal system q1, . . . , qNk of Pk we have√√√√‖ Nk∑

j=1

|qj |‖K =
√
‖Bµk

k ‖K ≤ C sup
p∈Pk

‖p‖Ak
‖p‖L2

µk

≤ C
√

CardAk.

As a consequence the error of uniform polynomial approximation by DLS on an AM has
the (far to be sharp) upper bound ‖f − Lµkk [f ]‖K ≤ (1 + C

√
CardAk)dk(f,K).

Notice that in particular we shown that lim supk

(
‖pk‖K
‖pk‖L2

µk

)1/k

≤
(
C
√

CardAk
)1/k

= 1

for any sequence of polynomials pk, deg pk ≤ k. In this sense admissible meshes are a kind
of discrete model of Bernstein Markov measures suitable for applications since for each
finite degree they are finitely supported, moreover in a variety of cases we can explicitly
compute an admissible mesh for the given K.
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Another analogy of these sequences of finitely supported measures is that it still hold
true that the sequence of uniform probability measures µk associated to an admissible
mesh for K s an asymptotically Fekete sequence of measures, namely

lim
k

(∫
. . .

∫
| det VDM(z1, . . . , zNk)|dµk(z0) . . . dµk(zNk)

) n+1
2nkNk

= d(K), where Nk :=

(
k + d

d

)
.

As a consequence it is possible to prove (following the case of a fixed Bernstein Markov
measure; see [13] [19]) that one has

• limk
B
µk
k
Nk

µk = µK .

• limk
1

2Nk
logBµk

k = V ∗K locally uniformly if K is L-regular.

Lastly we can extract (by numerical linear algebra) from an admissible mesh its Fekete
points Fk ⊂ Ak, it turns out that they are asymptotically Fekete for K and thus

• limk µFk = µK in the weak∗ sense; see [12].
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